Трассировка лучей nvidia что это
NVIDIA RTX TECHNOLOGY
Новое поколение инноваций
Технология NVIDIA RTX™ — одно из самых важных достижений NVIDIA в компьютерной графике, которая положила начало новому поколению приложений, моделирующим мир с невероятной скоростью. Благодаря поддержке новых технологий ИИ, трассировки лучей и моделирования RTX представляет собой полноценную платформу, которая позволяет создавать невероятные проекты в 3D, фотореалистичные симуляции и впечатляющие визуальные эффекты быстрее, чем прежде.
КЛЮЧЕВЫЕ ТЕХНОЛОГИИ
Трассировка лучей
Технология RTX воплощает мечту о рендеринге кинематографического качества в реальном времени благодаря оптимизированным API для трассировки лучей, таким как NVIDIA OptiX™, Microsoft DXR и Vulkan. Теперь фотореалистичный рендеринг объектов и окружений в реальном времени в комбинации с физически точными тенями, отражениями и преломлениями позволяет художникам и дизайнерам создавать потрясающий контент быстрее, чем когда-либо раньше.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
Технология NVIDIA RTX привносит возможности ИИ в визуальные вычисления и позволяет разрабатывать приложения на базе ИИ, которые ускоряют рабочий процесс. Эти возможности значительно ускоряют работу художников и дизайнеров, освобождая время и ресурсы за счет интеллектуальной обработки изображений, автоматизации повторяющихся задач и оптимизации процессов, требующих большого объема вычислений.
РАСТЕРИЗАЦИЯ
RTX поддерживает такие новые технологии программируемого шейдинга, как Variable-Rate Shading, Texture-Space Shading и Multi-View Rendering. Использование этих технологий позволяет создавать более насыщенные визуальные эффекты с гибкой интерактивностью, крупными моделями и сценами и улучшенными возможностями в VR.
МОДЕЛИРОВАНИЕ
Реалистичность визуальных эффектов достигается не только путем соответствия внешнего вида, но и поведения. Благодаря возможностям ядер CUDA®и таким API, как NVIDIA PhysX®, Flow, FleX и CUDA, технология RTX позволяет точно моделировать поведение реальных объектов во всем: от игр до виртуальных сред и спецэффектов
Трансформация рабочих процессов с NVIDIA Omniverse
NVIDIA Omniverse™ — это многоуровневая платформа, позволяющая приложениям сторонних производителей использовать возможности технологии RTX через подключение к порталам. Обеспечьте виртуальную совместную работу в реальном времени в интерактивной смоделированной среде и мгновенную фотореалистичную визуализацию для высококачественного рендеринга с трассировкой лучей и пути в один клик. Скачайте открытую бета-версию Omniverse и измените работу с графикой.
Что такое Nvidia RTX, как технология трассировки лучей меняет графику в играх и зачем покупать новую GeForce (коротко и с примерами)
Что такое Nvidia RTX?
Nvidia RTX — платформа, содержащая ряд полезных инструментов для разработчиков, которые открывают доступ к новому уровню компьютерной графики. Nvidia RTX доступна только для нового поколения видеокарт Nvidia GeForce RTX, построенного на архитектуре Turing. Основная особенность платформы — наличие возможности трассировки лучей в реальном времени (также называемой рейтресингом).
Что за трассировка лучей?
Трассировка лучей — функция, которая позволяет имитировать поведение света, создавая правдоподобное освещение. Сейчас в играх лучи двигаются не в реальном времени, из-за чего картинка, зачастую, хоть и выглядит красиво, но всё равно недостаточно реалистична — используемые сейчас технологии требовали бы огромное количество ресурсов для рейтресинга.
Это исправляет новая серия видеокарт Nvidia GeForce RTX, обладающая достаточной мощностью для расчёта пути лучей.
Как это работает?
Это побудило Nvidia внедрить дополнительные ядра в видеокарты GeForce RTX, которые возьмут на себя большую часть нагрузки, улучшая производительность. Они также снабжены искусственным интеллектом, задача которого — высчитывать возможные ошибки во время процесса трассировки, что поможет их избежать заранее. Это, как заявляют разработчики, также повысит скорость работы.
И как трассировка лучей влияет на качество?
Shadow of the Tomb Raider, релиз которой состоится 14 сентября этого года:
Battlefield 5, которая выйдет 19 октября:
Metro Exodus, чей выход намечен на 19 февраля 2019 года:
Control, дата выхода которой пока неизвестна:
Вместе с этим всем, Nvidia рассказала, какие ещё игры получат функцию трассировки лучей.
Как включить RTX?
А есть ли аналоги у AMD?
Технология, которая будет работать на API Vulkan, пока находится в разработке.
Трассировка лучей. Современные возможности видеокарт
Содержание
Содержание
Технология построения реалистичных сцен методом трассировки лучей (ray tracing) известна уже несколько десятков лет, но только пару последних лет она полноправно заявляет свои права в сфере компьютерных игр. Тем самым переставая быть инструментом, применяемым сугубо в профессиональной сфере, постепенно становясь ближе простому обывателю.
Виртуальные фотоны
Технологии в сфере графики обычно сложно объяснить и максимально доступно разложить по полочкам, но в случае с трассировкой лучей — все довольно просто. Сама идея построения картинки, можно сказать, взята из реальной жизни, а в ее основе лежат процессы из школьного курса физики. Суть идеи — просчет поведения луча света при преломлении и отражении от моделируемого объекта. При этом в расчет берутся, как интенсивность виртуального луча (его освещенность), так и его взаимодействие с другими объектами, другими виртуальными лучами и источниками света. В результате чего, пользователь на экране монитора наблюдает изображение, максимально приближенное к тому, что он привык видеть в реальной жизни.
По сути, в цифровую среду перенесена работа света из реального мира. Виртуальный фотон движется из исходной точки и по пути взаимодействует с объектом. В точке соприкосновения с моделью его дальнейшее движение определяется свойствами самого объекта. Световой луч может быть полностью поглощен темным объектом, или отражен его зеркальной поверхностью.
Технология трассировки лучей пытается максимально реалистично отобразить объекты и их взаимодействие со светом так же, как это происходит в реальном мире.
Такое сходство рейтрейсинга с процессами, происходящими в реальном мире, делает его довольно успешной техникой 3D-рендеринга. Даже в «кубических» играх наподобие Minecraft, картинка выглядит довольно реалистично, насколько это конечно возможно.
Основная проблема — такая насыщенная среда довольно сложно поддается моделированию. Воссоздание процессов работы света в реальном мире — очень сложный и требовательный к вычислительным ресурсам процесс. Для примера, при расчете одного кадра с разрешением Full HD потребуется одновременно просчитать 2073600 виртуальных лучей, каждый их которых, прежде чем сформирует один пиксель на экране, по пути следования будет взаимодействовать не с одним десятком своих «сородичей». При этом не стоит забывать, что речь идет о динамичной сцене, а не о статичной картинке, поэтому количество вычислений, при комфортном значении FPS, как правило, составляющих 50–60 FPS, возрастает в разы! Понимание этого процесса объясняет наличие огромных серверных ферм для рендеринга на киностудиях и студиях визуализации, профессионально занимающихся созданием контента высокого качества.
Главная идея при продвижении трассировки лучей в массы, заключалась в том, что для качественного скачка необходимо было разработать алгоритм, который по сильно зашумленной картинке, полученной в результате всего нескольких проходов (итераций) определял основные параметры создаваемого изображения. А именно: характеристики освещенности сцены, расположение теней и отражений объектов. И, исходя из имеющихся данных, дорисовывал ее до удобоваримого вида.
Это и было ключевым новшеством. Все остальное — уже давно известно визуализаторам. Существует огромнее количество различных программ и плагинов к ним, ориентированных на удаление методом аппроксимации посторонних шумов изображения. Главное в технологии — определение начальных параметров сцены.
Трассировка лучей в игровом контенте
Из-за проблематики, озвученной выше, рядовому геймеру предоставляется урезанная версия технологии, которая не потребует внушительных затрат, но позволит насладиться сочной картинкой, максимально приближенно передающей игру света и теней.
Чтобы сделать рейтрейсинг ближе к народу, производители контента вынуждены идти на определенные компромиссы. Ведь кроме увлекательного сюжета и удобного геймплея, у игры должна быть отменная визуализация, которая полностью погрузит геймера в игровой процесс. Это достигается определенными «уловками» в сфере создания отражений, теней и реалистичного распределения света по игровой сцене.
Отражения
В большинстве игр с трассировкой лучей в настоящее время используется комбинация традиционных методов освещения, обычно называемых растеризацией, и рейтрейсинга на определенных поверхностях, таких как отражения от водной глади и металлоконструкций.
Для создания отражений, помимо стандартных полигонов игровой сцены, определенным ее частям присваивается свойство материала, с необходимым коэффициентом отражения. Встречаясь с такой поверхностью, условный фотон либо отражается под тем же углом (зеркальные поверхности), либо преломляется под заданным углом (другие поверхности). Причем, при использовании рейтрейсинга на матовых поверхностях, отражение сильно зависит от близости объекта к ней. Т. е., чем объект дальше от поверхности, тем более размытым он кажется.
Это важное свойство, которое большинство даже не замечает в реальной жизни, а в игровом процессе такая детализация существенно повышает качество картинки и ее восприятие.
Battlefield V — яркий представитель такого игрового контента. Пользователь во всей красе наблюдает отражения войск и техники на воде, отражение местности на плоскостях пролетающих самолетов, отражение вспышек от взрывов на поверхностях игрового мира.
Создание эффектов тени всегда вызывало у разработчиков кучу сложностей и нестыковок. Есть тени, которые являются просто проекциями объектов. Как правило, они имеют четко очерченные края. Есть более проработанные варианты, так называемые мягкие тени. Они имеют определенную линию перехода, отделяющую тень от полутени, но, к сожалению, в реальной жизни это так не работает.
При создании теней методом рейтрейсинга, виртуальные лучи, исходящие из источника света, при встрече с объектами, сами создадут необходимые области затенения. При этом учитывается не только интенсивность источника света, но и световые излучения, продуцируемые другими объектами. В итоге — наиболее соответствующий реальным условиям результат.
Наиболее интересно реализовать динамику и реализм теней на данный момент удалось разработчикам компьютерной игры Shadow of the Tomb Raider.
Освещенность
Если, что называется «по-честному», просчитывать всю освещенность сцены, то необходимо учитывать абсолютно все световые лучи присутствующие в ней. А это очень и очень ресурсоемкая задача!
Поэтому для трассировки лучей в играх, во-первых, используется определенное количество источников света, а во-вторых, количество итераций рейтрейсинга тоже строго ограничено. Этот трюк позволяет сделать картинку живой и реалистичной, но в то же время не перегружает графическую подсистему ПК.
Пока еще в редких играх используется полная трассировка лучей для просчета глобального освещения всей сцены. Это самый дорогой в вычислительном отношении способ. Для эффективной работы он нуждается в самой мощной из доступных в данный момент видеокарт. А вот результат вполне может разочаровать, поскольку топовая видеокарта справится с такой задачей в разрешении Full HD, хотя ей вполне по силам без использования рейтрейсинга выводить на экраны изображение 4К. Metro Exodus — пожалуй, единственная игрушка, использующая трассировку лучей для построения всей сцены, хотя в некоторых моментах ее реализация оставляет желать лучшего.
Аппаратная часть
Наиболее удачливой в коммерческом использовании технологии оказалась компания NVIDIA. Ее серия графических адаптеров GeForce RTX — безоговорочный лидер в работе с виртуальными фотонами. Ведь она была специально разработана для решения задач по трассировке лучей.
Компания AMD на данном этапе сохраняет завидное олимпийское спокойствие. Однако это затишье не должно расслаблять конкурентов. Скорее всего, в самом ближайшем будущем, игроманам будет презентована специализированная линейка видеоадаптеров на базе архитектуры RDNA 2, презентованной ранее.
Краткие итоги
С появлением трассировки лучей в игровом сегменте, в первую очередь реализация отражений стала значительно правдивей для пользователя и существенно проще для производителя контента. Во-вторых — появились довольно правдоподобные алгоритмы рассеивания отражений. В-третьих, улучшилось освещение сцен. Как бы не ограничивались и аппроксимировались расчеты освещенности сцены, все же созданные по технологии рейтрейсинга они более правдоподобны и наиболее приближены к реалиям. К тому же, тени созданные по этой технологии «умеют» окрашиваться в зависимости от расположенных поблизости источников света.
Трассировка лучей: что, как и почем
С самого первого своего публичного явления на Gamescom 2018 архитектура Nvidia Turing стала предметом всеобщего обсуждения. Этот метод рендеринга уже давно был недостижимой мечтой графических технологий и вот, наконец, видеокарты вроде Nvidia GeForce RTX 2080 научились с ним работать с приемлемой производительностью.
Трассировка лучей, пожалуй, самое значительное улучшение графики в игровом мире за последние годы. Во всяком случае, в ПК-гейминге.
Так что же такое рейтрейсинг (ray tracing)? Это продвинутый и очень реалистичный способ рендеринга света и теней, благодаря которому компьютерная графика в фильмах и сериалах выглядит столь правдоподобно. Но есть одно «но» (на самом деле, конечно же, не одно): поскольку трассировка работает посредством симуляции и отслеживания каждого луча света от источника, технология крайне требовательна к мощности железа. В этом кроется главная причина, по которой мы не видели настоящего рейтрейсинга в играх. До сих пор.
В наши дни трассировка уже доступна на ПК, хотя пока лишь самые крупные тайтлы рискуют пользоваться ей, и то в ограниченном виде, довольствуясь лишь реалистичными отражениями или тенями. Игр, созданных при полной поддержке ray tracing, еще не существует.
Самое время разобраться, что такое трассировка лучей, как она работает и что дает нашим играм. Учитывая тот факт, что технология новая и почти каждый день появляется какая-нибудь новая информация о ней, мы постараемся своевременно обновлять эту статью.
Что такое трассировка лучей?
Это метод рендеринга изображения, позволяющий создавать потрясающе реалистичные световые эффекты. По сути, алгоритм отслеживает путь каждого луча от источника и симулирует способ, с которым свет взаимодействует с каждым виртуальным объектом на своем пути.
В последние годы мы наблюдали, как внутриигровое освещение становится все более и более правдоподобным, но преимущества новой технологии касаются больше не самого света, а того, каким образом он применяется в игровом мире.
Благодаря трассировке мы с вами сможем увидеть гораздо более реалистичные тени и отражения, а также продвинутые эффекты просвечивания и рассеивания света. Алгоритм принимает во внимание то, каким образом лучи падают на объект, просчитывает их взаимодействие и выдает изображение, подобное тому, что увидел бы человеческий глаз в схожих условиях в реальном мире. При этом влияние на результат оказывает множество деталей, включая даже видимые в сцене цвета.
При наличии достаточной вычислительной мощности можно создавать невероятно реалистичные изображения, практически неотличимые от реальности. Проблема заключается лишь в том, что подобной производительностью на сегодняшний день могут похвастать лишь дорогие ПК и консоли нынешнего поколения, причем первые страдают от завышенных цен на видеокарты, а вторые все еще в огромном дефиците.
При создании визуальных эффектов для кинофильмов и сериалов трассировка лучей используется в несравнимо большей степени, и причина у этого все та же: для такой работы студии могут позволить себе целые серверные фермы. И даже в таком случае применение технологии остается длительным и кропотливым процессом, не говоря уже о заоблачной стоимости подобного оборудования.
В видеоиграх же традиционно применяется растеризация (или растрирование, если угодно), как гораздо более быстрый способ рендеринга. Это процесс превращения трехмерной графики в двухмерные пиксели на вашем экране, для отображения реалистичного освещения использующий программы-шейдеры. К счастью, появляется все больше игр с поддержкой специального железа от Nvidia, способного управиться с применением трассировки в реальном времени. Да, растрирование по-прежнему преобладает в игрострое, но это будет продолжаться до тех пор, пока разработчики, следуя за распространением RTX видеокарт, не станут внедрять в свои проекты освещение на основе рейтрейсинга.
И, если прямо сейчас мы с вами не наблюдаем чего-то крышесносящего, фундамент для появления действительно потрясающей картинки уже заложен. С учетом того факта, что в консолях нового поколения уже реализована поддержка трассировки, нас ждет революция в гейминге.
Игры с поддержкой трассировки лучей
Прямо сейчас достаточно много игр поддерживают технологию трассировки лучей, а скоро их станет еще больше: даже в инди-игры теперь добавляют эффекты реалистичного освещения. А пока вот список нынешних игр с поддержкой RTX на ПК:
В списке будущих хитов с поддержкой трассировки лучей в реальном времени находятся:
Видеокарты с поддержкой трассировки лучей
Трассировку лучей в реальном времени качественно поддерживают только видеокарты Nvidia. AMD заявила, что вплотную займется рейтрейсингом в будущем, а пока что эта технология работает на их видеокартах лишь номинально, превращая многие игры в слайдшоу.
Само собой получается, что для получения удовольствия от трассировки лучей вы должны быть обладателем как минимум Nvidia GeForce RTX 2060. Если же у вас найдутся дополнительные деньги на RTX 2080 Ti, то вы не будете разочарованы картинкой. Правда, эта видеокарта пробьет в вашем кошельке огромную дыру.
Ниже вы найдете список всех современных видеокарт, аппаратно поддерживающих рейтрейсинг. Спойлер: все они носят гордое «RTX» в названии.
Кроме того, трассировка лучей в реальном времени программно поддерживается на видеокартах поколения Pascal (GTX 10xx), начиная от GTX 1060 6 GB, но, ввиду отсутствия RT ядер включение RTX в настройках приведет к существенному падению производительности — вплоть до полной неиграбельности.
Консоли с поддержкой трассировки лучей
Платформы предыдущего поколения не были способны воспроизводить актуальные игры с трассировкой лучей в реальном времени. Однако современным консолям — PlayStation 5 и Xbox Series X|S — эта задача вполне по плечу. Но с некоторыми оговорками: эти консоли слабее топовых ПК, поэтому трассировка лучей реализуется частично, жертвуя некоторыми другими эффектами — например, максимальным разрешением изображения или частотой кадров.
В некоторых играх, таких как Metro Exodus Enchansed Edition, страдает дальность прорисовки, а консоль Xbox Series S и вовсе практически не способна выдавать комфортный fps с трассировкой лучей. С другой стороны, это оправдано для бюджетных (а консоли именно таковыми и являются в сравнении с компьютерами) игровых устройств.
Производительность
Даже не вдаваясь в цифры и графики становится видно, как эти завораживающие визуальные эффекты печальнейшим образом сказываются на производительности ПК. Частота смены кадров падает просто катастрофически.
К примеру, Metro Exodus, запущенная в разрешении 3440х1440 с «экстремальными» настройками графики, выдает на RTX 2080 Ti в среднем 41 кадр в секунду. Однако, стоит только включить трассировку лучей, как fps падает до среднего значения в 23 кадра. Разумеется, играть можно, но… вы понимаете.
К счастью, эта игра поддерживает технологию DLSS, использующую интеллектуальный апскейл разрешения. С ней вы сможете выжать из игры больше: к примеру, во время теста Metro Exodus с «экстремальной» графикой и «ультра» рейтрейсингом показала в среднем 44 кадра в секунду. Впрочем, это уже тема для отдельной статьи.
Следовательно, в погоне за трассировкой лучей вам придется быть более консервативным в выборе разрешения, ведь для более или менее комфортной игры в 4K вам определенно не обойтись без RTX 2080 Ti. Для привычного же 1080р с рейтрейсингом вполне будет достаточно RTX 2060.
Геймер со стажем. Люблю читать, спать и Бога-Императора.
GeForce RTX больше не нужен? Тесты трассировки лучей на ускорителях GeForce GTX 10 и 16
После того как NVIDIA продемонстрировала трассировку лучей в реальном времени на видеокартах серии GeForce RTX, трудно сомневаться в том, что именно за этой технологией (в разумном сочетании с алгоритмом растеризации) будущее компьютерных игр. Однако графические процессоры на основе архитектуры Turing со специализированными RT-ядрами до недавнего времени считались единственной категорией дискретных GPU, которая располагает подходящей для этого вычислительной мощностью.
Как показали тесты первых игр, освоивших Ray Tracing (Battlefield V, Metro Exodus и Shadow of the Tomb Raider), даже ускорители GeForce RTX (особенно младший из них — RTX 2060) испытывают существенное падение частоты смены кадров в задачах гибридного рендеринга. Несмотря на первые успехи, трассировку лучей в реальном времени еще нельзя считать зрелой технологией. Лишь тогда, когда не только самые передовые и дорогостоящие устройства, но и графические карты среднего ценового уровня достигнут прежних стандартов быстродействия в играх новой волны, можно будет объявить, что смена парадигм, запущенная компанией Дженсена Хуанга, наконец, совершилась.
Трассировка лучей на «Паскалях» — за и против
Но уже сейчас, пока еще не сказано ни слова о будущем преемнике архитектуры Turing, NVIDIA решила подстегнуть прогресс. На мероприятии GPU Technology Conference в прошлом месяце зеленая команда сообщила, что ускорители на чипах Pascal, а также младшие представители семейства Turing (серия GeForce GTX 16) приобретут функцию трассировки лучей в реальном времени наравне с продуктами под маркой RTX. Сегодня обещанный драйвер уже можно скачать на официальном сайте NVIDIA, а список устройств включает модели семейства GeForce 10, начиная с GeForce GTX 1060 (версия 6 Гбайт), профессиональный ускоритель TITAN V на чипе Volta, и, разумеется, новоприбывшие модели средней ценовой категории на чипе TU116 — GeForce GTX 1660 и GTX 1660 Ti. Обновление коснулось и ноутбуков с соответствующими GPU.
С технической точки зрения здесь нет ничего сверхъестественного. Графические процессоры с унифицированными шейдерными блоками могли выполнять Ray Tracing задолго до появления архитектуры Turing, хотя в то время не располагали достаточным быстродействием для того, чтобы эта возможность была востребована в играх. Кроме того, отсутствовал единый стандарт программных методов, помимо закрытых API наподобие фирменного NVIDIA OptiX. Теперь, когда существует расширение DXR для Direct3D 12 и аналогичные библиотеки в интерфейсе программирования Vulkan, игровой движок может обращаться к ним вне зависимости от того, оснащен ли графический процессор специализированной логикой — лишь бы драйвер давал такую возможность. У чипов Turing для этой цели есть отдельные RT-ядра, а в GPU архитектуры Pascal и процессоре TU116 трассировка лучей реализована в формате вычислений общего назначения на массиве шейдерных ALU.
Однако все, что нам известно об архитектуре Turing со слов самой NVIDIA, говорит о том, что Pascal не годится для приложений с поддержкой DXR. В прошлогодней презентации, посвященной флагманским моделям семейства Turing — GeForce RTX 2080 и RTX 2080 Ti — инженеры приводили следующие выкладки. Если бросить все ресурсы лучшей из потребительских видеокарт прошлого поколения — GeForce GTX 1080 Ti — на вычисления трассировки лучей, то итоговая производительность не превысит 11 % от того, на что в теории способен RTX 2080 Ti. Не менее важно и то, что свободные CUDA-ядра чипа Turing в то же время можно использовать для параллельной обработки других компонентов изображения — выполнения шейдерных программ, очереди неграфических расчетов Direct3D при асинхронном исполнении и так далее.
В реальных играх ситуация сложнее, ведь на существующем железе разработчики дозированно пользуются функциями DXR, а львиную долю вычислительной нагрузки по-прежнему занимает растеризация и шейдерные инструкции. К тому же часть различных эффектов, которые создаются при помощи трассировки лучей, неплохо исполняются и на CUDA-ядрах чипов Pascal. К примеру, зеркальные поверхности в Battlefield V не подразумевают вторичного отражения лучей, а следовательно, являются посильной нагрузкой для мощных видеокарт прошлого поколения. То же относится и к теням в Shadow of the Tomb Raider, хотя рендеринг сложных теней, сформированных несколькими источниками света, уже представляет собой более трудную задачу. А вот глобальное освещение в Metro Exodus с трудом дается даже «Тьюрингу», и от Pascal нельзя ожидать в какой-либо степени сопоставимых результатов.
Как ни крути, речь идет о многократной разнице в теоретическом быстродействии между представителями архитектуры Turing и их ближайшими аналогами на кремнии Pascal. Причем в пользу Turing играет не только присутствие RT-ядер, но и многочисленные усовершенствования общего характера, свойственные ускорителям нового поколения. Так, чипы Turing умеют параллельно выполнять операции над вещественными (FP32) и целочисленными (INT) данными, несут большой объем локальной кеш-памяти и отдельные CUDA-ядра для расчетов сниженной точности (FP16). Все это значит, что Turing не только лучше справляется с шейдерными программами, но и может сравнительно эффективно обсчитывать трассировку лучей без специализированных блоков. Ведь настолько ресурсоемким рендеринг при помощи Ray Tracing делает не только и не столько поиск пересечений между лучами и элементами геометрии (которым занимаются RT-ядра), сколько вычисление цвета в точке пересечения (shading). И между прочим, перечисленные достоинства архитектуры Turing в полной мере относятся к GeForce GTX 1660 и GTX 1660 Ti, хотя в чипе TU116 нет RT-ядер, поэтому тесты этих видеокарт с программной трассировкой лучей представляют отдельный интерес.
Но довольно теории, ведь мы уже собрали данные о производительности «Паскалей» (а также младших «Тьюрингов») в Battlefield V, Metro Exodus и Shadow of the Tomb Raider на основе собственных измерений. Заметим, что ни драйвер, ни сами игры не регулируют количество лучей для того, чтобы снизить нагрузку на GPU без RT-ядер, а значит, качество эффектов на GeForce GTX и GeForce RTX должно быть одинаковым.
⇡#Тестовый стенд, методика тестирования
Тестовый стенд | |
---|---|
CPU | Intel Core i9-9900K (4,9 ГГц, 4,8 ГГц в AVX, фиксированная частота) |
Материнская плата | ASUS MAXIMUS XI APEX |
Оперативная память | G.Skill Trident Z RGB F4-3200C14D-16GTZR, 2 x 8 Гбайт (3200 МГц, CL14) |
ПЗУ | Intel SSD 760p, 1024 Гбайт |
Блок питания | Corsair AX1200i, 1200 Вт |
Система охлаждения CPU | Corsair Hydro Series H115i |
Корпус | CoolerMaster Test Bench V1.0 |
Монитор | NEC EA244UHD |
Операционная система | Windows 10 Pro x64 |
ПО для GPU NVIDIA | |
NVIDIA GeForce RTX 20 | NVIDIA GeForce Game Ready Driver 419.67 |
NVIDIA GeForce GTX 10/16 | NVIDIA GeForce Game Ready Driver 425.31 |
Игровые тесты | ||||
---|---|---|---|---|
Игра | API | Настройки, метод тестирования | Полноэкранное сглаживание | |
1920 × 1080 / 2560 × 1440 | 3840 × 2160 | |||
Battlefield V | DirectX 12 | OCAT, миссия Liberte. Макс. качество графики | TAA High | TAA High |
Metro Exodus | DirectX 12 | Встроенный бенчмарк. Профиль качества графики Ultra | TAA | TAA |
Shadow of the Tomb Raider | DirectX 12 | Встроенный бенчмарк. Макс. качество графики | SMAA 4x | Выкл. |
Показатели средней и минимальной кадровых частот выводятся из массива времени рендеринга индивидуальных кадров, который записывает встроенный бенчмарк (Metro Exodus, Shadow of the Tomb Raider) или утилита OCAT, если в игре его нет (Battlefield V).
Средняя частота смены кадров на диаграммах является величиной, обратной среднему времени кадра. Для оценки минимальной кадровой частоты вычисляется количество кадров, сформированных в каждую секунду теста. Из этого массива чисел выбирается значение, соответствующее 1-му процентилю распределения.
Участники тестирования
В тестировании производительности приняли участие следующие видеокарты:
Battlefield V
Благодаря тому, что Battlefield V сама по себе является довольно нетребовательной игрой (особенно в режимах 1080p и 1440p), а трассировка лучей в ней применяется фрагментарно, испытание GeForce 10-й серии с опцией DXR принесло обнадеживающие результаты. Впрочем, из всех моделей без поддержки Ray Tracing на уровне кремния нам пришлось ограничиться моделями GTX 1070/1070 Ti и GTX 1080/1080 Ti. Игры Electronic Arts с подозрением реагируют на частую смену конфигурации железа и блокируют пользователя на период в одни или несколько суток. Поэтому замеры производительности GeForce GTX 1060 и двух устройств серии GeForce GTX 16 появятся в этой статье позже, как только Battlefield V снимет ограничения с нашей тестовой машины.
В процентном выражении любой из участников тестирования испытывает примерно одинаковое падение быстродействия при различных установках качества трассировки лучей вне зависимости от разрешения экрана. Так, быстродействие видеокарт под маркой GeForce RTX 20 снижается на 28–43 % при низком и среднем качестве эффектов DXR, а при высоком и максимальном — на 37–53 %.
Если речь идет о старших моделях семейства GeForce 10, то на уровнях трассировки лучей Low и Medium игра теряет от 36 до 42 % FPS, а при высоком качестве (настройки High и Ultra) DXR съедает уже 54–67 % частоты смены кадров. Заметим, что во многих, если не в большинстве игровых сцен Battlefield V нет выраженной разницы между настройками Low и Medium, а также между High и Ultra — ни по четкости изображения, ни по быстродействию. В надежде на то, что графические процессоры Pascal окажутся более чувствительными к этому параметру, мы провели тесты при всех четырех настройках. И действительно, проявились определенные различия, но только при разрешении 2160p и в пределах 6% FPS.
В абсолютных показателях любой из старших ускорителей на чипах Pascal может поддерживать кадровую частоту выше 60 FPS в режиме 1080p при сниженном качестве отражений, а GeForce GTX 1080 Ti претендует на аналогичный результат даже при трассировке на уровне High. Но стоит перейти к разрешению 1440p, и уже лишь GeForce GTX 1080 и GTX 1080 Ti обеспечивают комфортный фреймрейт на уровне 60 FPS и выше при качестве трассировки лучей Low или Medium, а в режиме 4К ни одна из карт прошлого поколения не обладает подходящей вычислительной мощностью (как, впрочем, и любой Turing за исключением флагманского GeForce RTX 2080 Ti).
Если искать параллели между конкретными ускорителями под маркой GeForce GTX 10 и GeForce RTX 20, то лучшая модель прошлого поколения (GeForce GTX 1080 Ti), которая в задачах стандартного рендеринга без DXR является аналогом GeForce RTX 2080, опустилась на уровень GeForce RTX 2070 при сниженном качестве трассировки лучей, а при высоком может бороться разве что с GeForce RTX 2060.
Дополнение: результаты GeForce GTX 1060, GTX 1660 и GTX 1660 Ti.
В тестах GeForce GTX 1660 и GTX 1660 Ti можно заметить слабые признаки того, что архитектура Turing и вправду лучше справляется с трассировкой лучей даже без поддержки RT-ядер по сравнению с видеокартами семейства Pascal аналогичного уровня — GeForce GTX 1070 и GTX 1070 Ti. При разрешениях 1080p и 1440p разница в потере быстродействия, которую GPU испытывает при активации DXR, между ускорителями 16-й серии, с одной стороны, и картами на чипе GP104, с другой, возникает при высоком и максимальном качестве эффектов трассировки лучей, пусть она и не превышает нескольких процентов. А вот в режиме 2160p при таких же настройках графический процессор TU116 уже выдерживает дополнительную нагрузку заметно лучше, чем «Паскали». Впрочем, последнее относится именно к GTX 1660 Ti: модель без приставки Ti с гибридным рендерингом в 4К откровенно не справляется.
Результаты двух моделей GeForce 16-й серии в абсолютных значениях частоты смены кадров также выглядят обнадеживающе. В режиме 1080p GeForce GTX 1660 и GTX 1660 Ti поддерживают около 60 FPS при низком и среднем качестве эффектов DXR, а при разрешении 1440p можно рассчитывать по меньшей мере на 30. Только в 4К с трассировкой лучей чипу TU116 делать уже нечего.
Battlefield V, макс. Качество | |||||
---|---|---|---|---|---|
1920 × 1080 TAA | |||||
RT Off | RT Low | RT Medium | RT High | RT Ultra | |
NVIDIA GeForce RTX 2080 Ti FE (11 Гбайт) | 100% | -28% | -28% | -37% | -39% |
NVIDIA GeForce RTX 2080 FE (8 Гбайт) | 100% | -34% | -35% | -43% | -44% |
NVIDIA GeForce RTX 2070 FE (8 Гбайт) | 100% | -35% | -36% | -46% | -45% |
NVIDIA GeForce RTX 2060 FE (6 Гбайт) | 100% | -42% | -43% | -50% | -51% |
NVIDIA GeForce GTX 1660 Ti (6 Гбайт) | 100% | -38% | -39% | -55% | -58% |
NVIDIA GeForce GTX 1660 (6 Гбайт) | 100% | -35% | -36% | -50% | -53% |
NVIDIA GeForce GTX 1080 Ti (11 Гбайт) | 100% | -40% | -39% | -54% | -58% |
NVIDIA GeForce GTX 1080 (8 Гбайт) | 100% | -41% | -41% | -57% | -61% |
NVIDIA GeForce GTX 1070 Ti (8 Гбайт) | 100% | -40% | -41% | -57% | -59% |
NVIDIA GeForce GTX 1070 (8 Гбайт) | 100% | -38% | -39% | -57% | -61% |
NVIDIA GeForce GTX 1060 (6 Гбайт) | 100% | -36% | -37% | -57% | -60% |
Battlefield V, макс. Качество | |||||
---|---|---|---|---|---|
2560 × 1440 TAA | |||||
RT Off | RT Low | RT Medium | RT High | RT Ultra | |
NVIDIA GeForce RTX 2080 Ti FE (11 Гбайт) | 100% | -33% | -34% | -44% | -45% |
NVIDIA GeForce RTX 2080 FE (8 Гбайт) | 100% | -37% | -38% | -47% | -49% |
NVIDIA GeForce RTX 2070 FE (8 Гбайт) | 100% | -36% | -36% | -48% | -48% |
NVIDIA GeForce RTX 2060 FE (6 Гбайт) | 100% | -41% | -42% | -51% | -52% |
NVIDIA GeForce GTX 1660 Ti (6 Гбайт) | 100% | -46% | -45% | -58% | -60% |
NVIDIA GeForce GTX 1660 (6 Гбайт) | 100% | -39% | -44% | -55% | -59% |
NVIDIA GeForce GTX 1080 Ti (11 Гбайт) | 100% | -40% | -40% | -59% | -62% |
NVIDIA GeForce GTX 1080 (8 Гбайт) | 100% | -36% | -39% | -59% | -63% |
NVIDIA GeForce GTX 1070 Ti (8 Гбайт) | 100% | -39% | -39% | -58% | -62% |
NVIDIA GeForce GTX 1070 (8 Гбайт) | 100% | -38% | -38% | -59% | -63% |
NVIDIA GeForce GTX 1060 (6 Гбайт) | 100% | -35% | -39% | -62% | -64% |
Battlefield V, макс. Качество | |||||
---|---|---|---|---|---|
3840 × 2160 TAA | |||||
RT Off | RT Low | RT Medium | RT High | RT Ultra | |
NVIDIA GeForce RTX 2080 Ti FE (11 Гбайт) | 100% | -30% | -30% | -44% | -47% |
NVIDIA GeForce RTX 2080 FE (8 Гбайт) | 100% | -31% | -32% | -46% | -49% |
NVIDIA GeForce RTX 2070 FE (8 Гбайт) | 100% | -40% | -38% | -53% | -52% |
NVIDIA GeForce RTX 2060 FE (6 Гбайт) | 100% | -28% | -30% | -44% | -53% |
NVIDIA GeForce GTX 1660 Ti (6 Гбайт) | 100% | -34% | -34% | -52% | -56% |
NVIDIA GeForce GTX 1660 (6 Гбайт) | 100% | -66% | -71% | -76% | -79% |
NVIDIA GeForce GTX 1080 Ti (11 Гбайт) | 100% | -36% | -37% | -60% | -63% |
NVIDIA GeForce GTX 1080 (8 Гбайт) | 100% | -40% | -43% | -64% | -67% |
NVIDIA GeForce GTX 1070 Ti (8 Гбайт) | 100% | -38% | -42% | -62% | -65% |
NVIDIA GeForce GTX 1070 (8 Гбайт) | 100% | -36% | -42% | -63% | -66% |
NVIDIA GeForce GTX 1060 (6 Гбайт) | 100% | -59% | -71% | -92% | -95% |
⇡#Metro Exodus
В отличие от Battlefield V, графический движок Metro Exodus не дает пощады видеокартам, лишенным аппаратных функций трассировки лучей. Так, в режиме 1080p старшие представители семейства Turing (начиная с GeForce RTX 2060 и заканчивая RTX 2080 Ti) понесли урон в диапазоне от 18 до 20 % FPS при высоком качестве трассировки и от 27 до 31 % — при низком. Другие же участники тестирования в таких же условиях теряют 53–59 и 66–71 % исходной частоты смены кадров. При разрешении 1440p потери вычислительной мощности на трассировку лучей составляют 21–27 и 31–38 % для моделей GeForce RTX 20, а также 59–64 и 72–76 % для всех остальных — в зависимости от того, какая из двух опций качества активирована в бенчмарке.
Заметим, что, пусть младшие «Тьюринги» (GeForce GTX 1660 и GTX 1660 Ti) и имеют преимущество в программной трассировке лучей перед ускорителями на чипах Pascal благодаря общим оптимизациям новой архитектуры, в Metro Exodus они испытывают не менее сильное падение быстродействия, чем GeForce GTX 1060. Среди видеокарт без аппаратной поддержки DXR лучше всего держатся GeForce GTX 1080 и GTX 1080 Ti — просто за счет крупного массива шейдерных ALU.
Однако процентные оценки быстродействия еще не дают ответа на вопрос, можно ли с комфортом играть в Metro Exodus на ускорителях без аппаратных RT-ядер в условиях гибридного рендеринга. Результаты тестирования легко описать одним примером: GeForce GTX 1080 Ti обеспечивает не меньше 60 FPS в режимах 1080p и 1440p при ультравысоком качестве изображения и без трассировки лучей. Но когда были включены эффекты DXR, бывший флагман преодолел отметку 30 FPS только при разрешении 1080p и низшем качестве трассировки лучей (опция High), которое допускает Metro Exodus. Модель GeForce RTX 2060, которая сама по себе не блещет результатами в этой игре, в любых тестах с DXR демонстрирует более высокую производительность. Что и говорить о более слабых представителях серии GeForce GTX 10: к примеру, GeForce GTX 1060 с трассировкой лучей в Metro Exodus годится только для съемки скриншотов.
Что касается последних новинок NVIDIA — GeForce GTX 1660 и GTX 1660 Ti, — то результаты на уровне GeForce GTX 1070 и GTX 1070 Ti в тестах гибридного рендеринга едва ли можно рассматривать как достижение, коль скоро и без трассировки лучей эти представители прошлого и настоящего поколений видеокарт соотносятся примерно так же.
Metro Exodus, профиль Ultra | |||
---|---|---|---|
1920 × 1080 TAA | |||
RT Off | RT High | RT Ultra | |
NVIDIA GeForce RTX 2080 Ti FE (11 Гбайт) | 100% | -18% | -27% |
NVIDIA GeForce RTX 2080 FE (8 Гбайт) | 100% | -18% | -27% |
NVIDIA GeForce RTX 2070 FE (8 Гбайт) | 100% | -17% | -26% |
NVIDIA GeForce RTX 2060 FE (6 Гбайт) | 100% | -20% | -31% |
NVIDIA GeForce GTX 1660 Ti (6 Гбайт) | 100% | -57% | -69% |
NVIDIA GeForce GTX 1660 (6 Гбайт) | 100% | -59% | -71% |
NVIDIA GeForce GTX 1080 Ti (11 Гбайт) | 100% | -53% | -66% |
NVIDIA GeForce GTX 1080 (8 Гбайт) | 100% | -54% | -68% |
NVIDIA GeForce GTX 1070 Ti (8 Гбайт) | 100% | -53% | -67% |
NVIDIA GeForce GTX 1070 (8 Гбайт) | 100% | -56% | -69% |
NVIDIA GeForce GTX 1060 (6 Гбайт) | 100% | -58% | -71% |
Metro Exodus, профиль Ultra | |||
---|---|---|---|
2560 × 1440 TAA | |||
RT Off | RT High | RT Ultra | |
NVIDIA GeForce RTX 2080 Ti FE (11 Гбайт) | 100% | -21% | -31% |
NVIDIA GeForce RTX 2080 FE (8 Гбайт) | 100% | -23% | -33% |
NVIDIA GeForce RTX 2070 FE (8 Гбайт) | 100% | -22% | -33% |
NVIDIA GeForce RTX 2060 FE (6 Гбайт) | 100% | -27% | -38% |
NVIDIA GeForce GTX 1660 Ti (6 Гбайт) | 100% | -63% | -74% |
NVIDIA GeForce GTX 1660 (6 Гбайт) | 100% | -65% | -75% |
NVIDIA GeForce GTX 1080 Ti (11 Гбайт) | 100% | -59% | -72% |
NVIDIA GeForce GTX 1080 (8 Гбайт) | 100% | -60% | -73% |
NVIDIA GeForce GTX 1070 Ti (8 Гбайт) | 100% | -59% | -72% |
NVIDIA GeForce GTX 1070 (8 Гбайт) | 100% | -62% | -74% |
NVIDIA GeForce GTX 1060 (6 Гбайт) | 100% | -64% | -76% |
Metro Exodus, профиль Ultra | |||
---|---|---|---|
3840 × 2160 TAA | |||
RT Off | RT High | RT Ultra | |
NVIDIA GeForce RTX 2080 Ti FE (11 Гбайт) | 100% | -29% | -40% |
NVIDIA GeForce RTX 2080 FE (8 Гбайт) | 100% | -30% | -43% |
NVIDIA GeForce RTX 2070 FE (8 Гбайт) | 100% | -28% | -41% |
NVIDIA GeForce RTX 2060 FE (6 Гбайт) | 100% | -35% | -47% |
NVIDIA GeForce GTX 1660 Ti (6 Гбайт) | 100% | -69% | -80% |
NVIDIA GeForce GTX 1660 (6 Гбайт) | 100% | -70% | -80% |
NVIDIA GeForce GTX 1080 Ti (11 Гбайт) | 100% | -66% | -78% |
NVIDIA GeForce GTX 1080 (8 Гбайт) | 100% | -68% | -79% |
NVIDIA GeForce GTX 1070 Ti (8 Гбайт) | 100% | -66% | -78% |
NVIDIA GeForce GTX 1070 (8 Гбайт) | 100% | -69% | -80% |
NVIDIA GeForce GTX 1060 (6 Гбайт) | 100% | -70% | -81% |
⇡#Shadow of the Tomb Raider
Из трех игр, которые в настоящий момент используют трассировку лучей в реальном времени, Shadow of the Tomb Raider располагается в промежутке между Battlefield V и Metro Exodus по требованиям к быстродействию GPU. Графический движок выполняет Ray Tracing для рендеринга теней с тремя уровнями детализации: от среднего до ультравысокого. Самая щадящая опция (Medium) на видеокартах под маркой GeForce RTX 20 забирает от 13 до 18 % частоты смены кадров — в зависимости от разрешения экрана. Впрочем, настройка Medium в Shadow of the Tomb Raider активирует трассировку лучей только для редких точечных источников света и в большинстве игровых сцен не производит заметного эффекта. Промежуточный вариант качества теней (High) снижает быстродействие этих устройств на 37–44 %, а высший (Ultra) — на 39–48 %.
Ускорители семейства GeForce GTX 10 при среднем качестве эффектов DXR отделались снижением быстродействия в 16–24 % (единственным исключением оказался GeForce GTX 1060, который потерял уже 31 % FPS при разрешении 1440p и 2160p). Установка высокого качества трассированных теней приводит к тому, что частота смены кадров на «Паскалях» падает на 41–57 % даже при разрешении экрана ниже 4К, а в режиме 2160p потери увеличиваются до 61–68 %. И наконец, ради трассировки на уровне Ultra владельцу видеокарты серии GeForce GTX 10 придется пожертвовать 54–67 % FPS при условно низких разрешениях экрана и 67-74 % в 4К.
Перед новыми устройствами NVIDIA в средней ценовой категории — GeForce GTX 1660 и GTX 1660 Ti — Shadow of the Tomb Raider открыл возможность доказать преимущества архитектуры Turing перед чипами Pascal без помощи специализированных RT-ядер. Действительно, эти ускорители справляются с тестами в условиях гибридного рендеринга более эффективно, чем близкие по производительности модели GeForce 10-й серии. Так, потери быстродействия на GeForce GTX 1660 Ti при трех уровнях качества эффектов DXR равняются 16–21, 50–55 и 51–61 % — в зависимости от разрешения экрана. У GeForce 1070 эти показатели достигают 19–21, 53–68 и 58–72 %.
Пусть эффекты трассировки лучей на минимальном уровне качества не так сильно повышают запросы игры к быстродействию железа, как в Metro Exodus или даже в Battlefield V, активация DXR мгновенно снимает с дистанции все видеокарты прошлого поколения. Исключением стал только GeForce GTX 1080 Ti: бывший флагман смог пробить отметку 60 FPS при разрешении 1080p. В любом случае, даже GeForce GTX 1080 Ti в любых тестах с трассировкой лучей проигрывает младшей модели среди полноценных «Тьюрингов» — GeForce RTX 2060.
Shadow of the Tomb Raider, макс. Качество | ||||
---|---|---|---|---|
1920 × 1080 SMAA 4x | ||||
RT Off | RT Medium | RT High | RT Ultra | |
NVIDIA GeForce RTX 2080 Ti FE (11 Гбайт) | 100% | -14% | -38% | -40% |
NVIDIA GeForce RTX 2080 FE (8 Гбайт) | 100% | -14% | -40% | -42% |
NVIDIA GeForce RTX 2070 FE (8 Гбайт) | 100% | -13% | -38% | -40% |
NVIDIA GeForce RTX 2060 FE (6 Гбайт) | 100% | -14% | -40% | -43% |
NVIDIA GeForce GTX 1660 Ti (6 Гбайт) | 100% | -16% | -50% | -51% |
NVIDIA GeForce GTX 1660 (6 Гбайт) | 100% | -16% | -45% | -50% |
NVIDIA GeForce GTX 1080 Ti (11 Гбайт) | 100% | -16% | -49% | -54% |
NVIDIA GeForce GTX 1080 (8 Гбайт) | 100% | -18% | -51% | -56% |
NVIDIA GeForce GTX 1070 Ti (8 Гбайт) | 100% | -18% | -51% | -55% |
NVIDIA GeForce GTX 1070 (8 Гбайт) | 100% | -19% | -53% | -58% |
NVIDIA GeForce GTX 1060 (6 Гбайт) | 100% | -19% | -57% | -63% |
Shadow of the Tomb Raider, макс. Качество | ||||
---|---|---|---|---|
2560 × 1440 SMAA 4x | ||||
RT Off | RT Medium | RT High | RT Ultra | |
NVIDIA GeForce RTX 2080 Ti FE (11 Гбайт) | 100% | -14% | -37% | -39% |
NVIDIA GeForce RTX 2080 FE (8 Гбайт) | 100% | -15% | -39% | -41% |
NVIDIA GeForce RTX 2070 FE (8 Гбайт) | 100% | -15% | -39% | -41% |
NVIDIA GeForce RTX 2060 FE (6 Гбайт) | 100% | -17% | -39% | -43% |
NVIDIA GeForce GTX 1660 Ti (6 Гбайт) | 100% | -19% | -48% | -53% |
NVIDIA GeForce GTX 1660 (6 Гбайт) | 100% | -18% | -48% | -53% |
NVIDIA GeForce GTX 1080 Ti (11 Гбайт) | 100% | -18% | -52% | -57% |
NVIDIA GeForce GTX 1080 (8 Гбайт) | 100% | -19% | -54% | -60% |
NVIDIA GeForce GTX 1070 Ti (8 Гбайт) | 100% | -18% | -54% | -60% |
NVIDIA GeForce GTX 1070 (8 Гбайт) | 100% | -19% | -57% | -63% |
NVIDIA GeForce GTX 1060 (6 Гбайт) | 100% | -31% | -41% | -67% |
Shadow of the Tomb Raider, макс. Качество | ||||
---|---|---|---|---|
3840 × 2160 AA Off | ||||
RT Off | RT Medium | RT High | RT Ultra | |
NVIDIA GeForce RTX 2080 Ti FE (11 Гбайт) | 100% | -14% | -37% | -40% |
NVIDIA GeForce RTX 2080 FE (8 Гбайт) | 100% | -18% | -40% | -43% |
NVIDIA GeForce RTX 2070 FE (8 Гбайт) | 100% | -18% | -40% | -43% |
NVIDIA GeForce RTX 2060 FE (6 Гбайт) | 100% | -22% | -44% | -48% |
NVIDIA GeForce GTX 1660 Ti (6 Гбайт) | 100% | -21% | -55% | -61% |
NVIDIA GeForce GTX 1660 (6 Гбайт) | 100% | -37% | -59% | -65% |
NVIDIA GeForce GTX 1080 Ti (11 Гбайт) | 100% | -21% | -61% | -67% |
NVIDIA GeForce GTX 1080 (8 Гбайт) | 100% | -23% | -64% | -70% |
NVIDIA GeForce GTX 1070 Ti (8 Гбайт) | 100% | -23% | -63% | -69% |
NVIDIA GeForce GTX 1070 (8 Гбайт) | 100% | -24% | -66% | -72% |
NVIDIA GeForce GTX 1060 (6 Гбайт) | 100% | -31% | -68% | -74% |
⇡# Выводы
С тех пор как на рынке появились первые видеокарты под флагом «RTX On», NVIDIA неустанно убеждала нас в том, что трассировка лучей в реальном времени невозможна на железе прошлого поколения с приемлемой частотой смены кадров. Есть ли повод чувствовать себя обманутым теперь, когда функции DXR открылись для множества моделей семейства GeForce GTX 10 и GeForce GTX 16? Определенно нет, ведь такой неожиданный шаг со стороны NVIDIA пойдет на пользу всем — геймерам, игроделам и производителям железа. За счет поддержки гибридного рендеринга в новом драйвере для «Паскалей» NVIDIA многократно увеличила базу оборудования, на возможности которой будут ориентироваться создатели грядущих игровых проектов. И мы не сомневаемся, что AMD рано или поздно тоже сделает свои продукты совместимыми с DXR. По крайней мере на это вполне способны модели Radeon RX Vega и Radeon VII.
Как бы то ни было, для обладателей мощных ускорителей NVIDIA прошлого поколения у нас уже есть хорошие новости: оказалось, что GeForce GTX 1080 Ti справляется с играми, которые используют трассировку лучей, почти не менее успешно, чем GeForce RTX 2060. На первый взгляд, сомнительное достижение, если учесть разницу между GTX 1080 Ti и RTX 2060 в цене и энергопотреблении. Но с другой стороны, ресурсов старого флагмана (да и GeForce GTX 1080, с рядом оговорок) вполне достаточно для того, чтобы играть в Battlefield V и Shadow of the Tomb Raider с умеренными настройками эффектов DXR (в Metro Exodus с трассировкой лучей «Паскалям» уже делать нечего). А вот остальные видеокарты, которые NVIDIA допустила к гибридному рендерингу наряду с семейством GeForce RTX 20, не оправдали подобной чести — особенно GeForce GTX 1060, который годится лишь для того, чтобы делать впечатляющие скриншоты. Конечно, можно увеличить быстродействие за счет снижения других параметров детализации, но в таком случае рендеринг теней и отражений с помощью трассировки лучей едва ли компенсирует общее падение качества изображения.
Кроме того, NVIDIA стремится стремится делать так, что поддержка DXR всегда сопровождается опцией DLSS (Deep Learning Super Sampling), которая повышает быстродействие за счет рендеринга в сниженном разрешении с последующим масштабированием кадра на тензорных ядрах (они, напомним, есть лишь в картах GeForce RTX). Четкость картинки, пропущенной через нейросеть, пока что сильно плавает в различных играх. Пускай мы видели откровенно провальные образцы использования этой технологии (такие, как в Battlefield V), есть и примеры высокого качества — Final Fantasy XV и Shadow of the Tomb Raider. Но даже без DLSS преимущество новой архитектуры в играх с трассировкой лучей неоспоримо, и появление таких возможностей у старых GPU лишь дополнительно его подчеркивает.
Что касается младших ускорителей на чипах Turing из серии GeForce GTX 16, то усовершенствованная организация шейдерных ALU, несмотря на отсутствие RT-ядер, и вправду позволяет графическому процессору TU116 легче справляться с трассировкой лучей по сравнению с ближайшими по быстродействию устройствами 10-го семейства (GeForce GTX 1070 и GTX 1070 Ti). Вот только разница заметна больше всего при высоком качестве эффектов DXR, когда никакие видеокарты, помимо GeForce RTX, уже явно не вытягивают игру с приемлемой частотой смены кадров.