Тпэ материал что это такое
Термопластичный эластомер вред и отзывы
Термоэластопласты широко востребованы во многих отраслях деятельности. Некоторые люди считают материал вредным для здоровья, поскольку он имеет полимерную основу и по характеристикам напоминает резину. Эксперты компании «Углич-Пласт» готовы доказать, что это лишь навеянные конкурентами стереотипы. Мы объективно расскажем, какой вред термопластичного эластомера и что о нем думают потребители.
Вреден ли ТЭП (ТПЭ, TPE) и насколько
Термоэластопласты являются смесью синтетического каучука (SEBS или SBS), масла и минеральных наполнителей. Из-за такого состава полимерные композиции и готовые изделия на их основе не разлагаются в атмосфере. Поэтому при неправильной утилизации материал загрязняет окружающую среду. Причем эта особенность характерна всем химическим соединениям.
Действительно, ТЭП нельзя назвать экологически чистым продуктом, но все не настолько серьезно, как рассказывают маркетологи. Недостаток полимерного эластомера с лихвой компенсируется его весомым преимуществом — способностью к вторичной переработке на экструдере. Многократная обработка сокращает выбросы продукции в атмосферу и затраты на производство ТЭП, а потому и удешевляет изготовление готового товара.
В отзывах о термопластичном эластомере некоторые потребители говорят о специфичном запахе. Эта проблема особенно актуальна в пищевой промышленности, где ТЭП часто используют в производстве пластиковой посуды. Скорее всего, авторы этих комментариев покупали самую дешевую продукцию из некачественного эластомера. Добросовестные производители TPE добавляют в состав высококачественные масла, которые не дают неприятный запах и не ухудшают качество пищи.
Отзывы о термоэластопластах
В целом отзывы о полимерных композициях положительные. Потребители и производители изделий отмечают следующие преимущества материала:
Для покупки экологически чистых полимерных композиций обращайтесь в компанию «Углич-пласт». Мы используем стандартные рецептуры или создадим уникальный состав под индивидуальные требования заказчика. В процессе производства выполняется непрерывный контроль качества, а готовая продукция проходит сертификацию по требованиям ГОСТов.
Термоэластопласт (ТЭП) — материал, его свойства и применение
Термоэластопласт (ТЭП, англ. TPE) или термопластичный каучук — полимерная смесь или соединение, которое при температуре плавления проявляет термопластичный характер, который позволяет его формовать в готовое изделие и которое в пределах его расчетного температурного диапазона обладает характеристиками эластомеров без сшивания в процессе изготовления. Этот процесс является обратимым, и изделия из TPE можно перерабатывать и переделывать.
История термопластичных эластомеров/каучуков (TPR / TPE)
Первый термопластичный эластомер стал доступен в 1959 году, и с тех пор появилось множество новых вариантов таких материалов. Существует шесть основных групп TPE, которые доступны коммерчески: стирольные блок-сополимеры (TPE-S), полиолефиновые смеси (TPE-O), эластомерные сплавы, термопластичные полиуретаны (TPE-U), термопластичные сополиэфиры (TPE-E) и термопластичные полиамиды (TPE-A).
Cвойства ТЭП
Несмотря на то, что ТЭП является термопластичным, он обладает эластичностью, аналогичной эластичности сшитого каучука. Ключевым индикатором является их мягкость или твердость, измеренная по шкале дюрометра Шора. Подобно сшитому каучуку, ТЭП доступны в виде очень мягких гелевых материалов от 20 Shore OO до 90 Shore A, после чего они входят в шкалу Shore D и могут быть произведены с целью получения значения твердости до 85 Shore D, которая обозначает очень твердый материал.
Конструкторы все чаще используют ТЭП из-за значительной экономии затрат, потому что их можно обрабатывать на оборудовании для переработки пластмасс. Обычный каучук, как натуральный, так и синтетический, представляет собой термореактивный материал, который должен подвергаться химической реакции сшивания во время формования или экструзии, обычно называемой вулканизацией. Благодаря этому процессу ТЭП обычно не обрабатывается в стандартном оборудовании для термопластов. Время, необходимое для завершения реакции вулканизации, зависит от многих факторов, однако в основном, это где-то между 1 минутой и несколькими часами. С другой стороны, термопластичные формовочные и экструзионные процессы, используемые для ТЭП, избегают стадии поперечной сшивки и могут достигать очень быстрых циклов, которые могут составлять всего 20 секунд. Для защиты окружающей среды затраты на издержки требуют, чтобы все больше и больше материалов подлежало переработке. Отходы от обработки ТЭП, отбракованные детали или продукты конечного использования можно легко перерабатывать, тогда как большинство термореактивных эластомеров заканчивают свою жизнь на полигоне.
Дополнительные преимущества по сравнению с термореактивной резиной, обеспечиваемые ТЭП, включают отличную цветоустойчивость и меньшую плотность.
Вот почему ТЭП являются одними из самых быстрорастущих сегментов пластмасс:
Основные показатели
Виды ТЭП (TPE)
Существует шесть основных групп ТЭП (TPE), доступных в продаже, и они перечислены в приблизительно возрастающем ценовом порядке:
Из-за широкого спектра ТЭП и постоянно расширяющихся применений крайне важно, чтобы инженеры и конструкторы изделий, использующих ТЭП, оставались в курсе последних новшеств от поставщиков отрасли. Ниже приведен список показателей, которых можно достичь с помощью материалов TPE.
ФИЗИЧЕСКИЕ СВОЙСТВА
Прочность на растяжение 0,5 — 2,4 Н / мм²
Ударная вязкость с прорезом Без разрыва Кг/ м²
Тепловой коэффициент расширения 130 x 10-6
Макс. Температура использования до 140 C
Плотность 0,91 — 1,3 г / см3
TPE и TPU являются термопластичными эластомерами, которые позволяют готовому изделию легко растягиваться или сгибаться. Прежде чем мы углубимся в подробности об этих двух типах материалов, которые используются в 3D печати, давайте поговорим о гибких материалах в целом и о том, почему они используются.
Есть несколько причин, из-за которых стоит задуматься об использовании TPE или TPU пластиков для 3D печати. Это может быть необходимость гашения вибраций и амортизация, высокая ударная вязкость и хорошая устойчивость к разрыву и износостойкость, высокая устойчивость к воздействию химических веществ, а также высоким или низким температурам. При всех этих плюсах следует отметить, что печатать гибкими материалами не так то просто как хотелось бы. Как правило, чем мягче и гибче материал, тем сложнее его использовать для 3D печати.
Теперь давайте подробнее поговорим о материалах TPE и TPU и проясним различия между ними. В статье мы также рассмотрим передовые методы 3D печати и предложим вам несколько 3D моделей, которые стоит попробовать напечатать TPE или TPU пластиками.
Два TP пластика
TPE означает термопластичный эластомер. Это смесь твердого пластика и мягкой резины, поэтому он обладает как термопластичными, так и эластичными свойствами. TPE охватывает широкий спектр гибких материалов, включая термопластичный полиуретан (TPU), термопластичный сополиэфир (TCP), термопластичный полиамид (TPA).
TPU означает термопластичный полиуретан. Это наиболее распространенный тип TPE, который находится в группе гибких материалов, обладающих большей жесткостью.
Разбираемся в путанице
Поскольку термины TPE и TPU часто путают, стоит внести ясность.
Теперь, когда мы знаем базовые вещи об этих материалах для 3D печати, давайте подробнее рассмотрим их различия.
Похожие, но разные
TPE и TPU можно разделить по их твердости, которая измеряется сопротивлением деформации материала. Как мы знаем, TPU тверже, чем TPE, а твердость TPU по Шору составляет от 60 A до 55D с высоким диапазоном упругости (обычно от 600 до 700%).
Логично, что TPE имеет более широкий диапазон твердости, чем TPU. Различия в химическом составе TPE означает, что некоторые типы TPE частично твердые и подходят для 3D печати чего-то вроде автомобильных шины, в то время как другие типы очень эластичны, сравнимы с резиновой лентой по своим свойствам.
По сравнению TPE, TPU демонстрирует большую жесткость, которую не следует путать с твердостью. Жесткость характеризует способность материала изгибаться, указывая на тенденцию материала возвращаться к своей первоначальной форме после воздействия нагрузки.
Другие отличия заключаются в том, что TPU будет вызывать больше проблем во время 3D печати, потому что TPU более плотный, чем TPE группа пластиков. TPU имеет гладкую поверхность, в то время как TPE обычно имеет более прорезиненную текстуру. TPU имеет большую стойкость к износу и стиранию, чем большинство TPE пластиков, а усадка ТПУ меньше, чем у TPE.
Теперь, когда мы разобрались с различиями TPU и TPE материалов, давайте рассмотрим рекомендации по 3D печати этими гибкими материалами.
Особенности настроек 3D печати гибкими TPU и TPE пластиками
3D печать TPE пластиками
Печать TPE пластиками может вызывать проблемы из-за эластичности. Рекомендуется печатать со следующими настройками:
Цены некоторых популярных марок TPE материалов: eSun TPE (около 42 долларов США / кг), MatterHackers Pro Series TPE (около 55 долларов США / 0,5 кг) и 3DXFlex TPE (около 68 долларов США / 0,5 кг).
3D печать TPU пластиками
Цены некоторых популярные марок TPU материалов: Kodak Flex TPU (около 50 долларов США / 0,75 кг), Ultimaker TPU (около 70 долларов США / 0,75 кг), TPU серии MatterHackers Build (около 45 долларов США / кг), Polymaker PolyFlex (около 55 долларов США / 0,75 кг) и, один из самых популярных, NinjaTek (около 55 долларов за 0,5 кг).
Что напечатать на 3D принтере с помощью TPU или TPE пластиков
Вот несколько классных 3В моделей, которые можно попробовать напечатать TPE или TPU пластиками:
Популярные статьи в разделе «Процесс 3D печати»
Тпэ материал что это такое
ТПЭ – общее наименование термопластичных эластомеров, именуемых также термоэластопластами. ТПЭ представляет собой каучукоподобный материал, переработка которого может осуществляться с использованием термопластических технологий, таких как литье под давлением, двухкомпонентное формование или экструзия. Термопластичные эластомеры (ТПЭ) представляют собой соединения, производимые из термопластичных материалов, таких как ПП, ПБТ или ПА, в сочетании с мягким каучуковым материалом, чаще всего содержащим такие добавки, как масло и наполнитель.
В 60-е годы прошлого века термопластичные материалы стремительно завоевывали все новые и новые сферы. В те времена резиновые смеси (термореактопласты) уже приобрели популярность на автомобильном рынке, однако являлись довольно дорогостоящими, труднопроизводимыми и плохо поддающимися переработке.
Новые тенденции в моде (более яркие цвета, обрезинивание поверхностей и пр.) повлекли за собой увеличение спроса на мягкий, более дешевый и легко производимый материал. Этот рост продолжился и в 70-е годы, когда началось крупномасштабное производство ТПЭ.
В настоящее время существует широкий ассортимент различных типов термопластичных эластомеров (ТПЭ), например:
В повседневном употреблении “Э” зачастую отбрасывается, в результате чего речь идет о ТПО, ТПС, ТПВ, ТПЭ, ТПУ и ТПА.
Все сочетания твердых и мягких сортов ТПЭ имеют свойства, аналогичные каучуку, и различаются только уровнями термостойкости, химической стойкости и гибкости, а также способностью к восстановлению после снятия нагрузки (остаточной деформацией при сжатии).
Недостатками ТПЭ по сравнению с традиционными термореактивными полимерами являются их более низкие эксплуатационные характеристики. ТПЭ имеют более низкую термостойкость, химическую стойкость и худшую формоустойчивость (остаточную деформацию сжатия) после воздействия нагрузки.
К основным преимуществам термопластичных эластомеров относятся более легкое превращение (и более низкие энергозатраты по сравнению с термореактопластами) посредством традиционных термопластических технологий, таких как литье под давлением, экструзия, горячее формование, выдувное формование и др. Кроме того, ТПЭ могут легко окрашиваться и переформовываться в различные термопласты с хорошим прилипанием.
ТПЭ производятся многими изготовителями компаундов, такими как Enplast и Ravago (Ensoft, Enflex, Sconablend), Kraiburg, Tecknor Apex, AES, Elasto, Softer, под такими фирменными наименованиями, как Dryflex, Sarlink, Monprene, Santoprene, Laprene и Forprene. В отдельных регионах также активно действуют более мелкие производители.
Производители нефтехимической продукции также осуществляют выпуск отдельных семейств ТПЭ, например, EG DSM со своей маркой Arnitel (ТПЭ-Э), Celanese с маркой Riteflex (ТПЭ-Э), DuPont с маркой Hytrel (ТПЭ-Э), Arkema с маркой Pebax (ТПА) и Dow с маркой Engage (ТПО).
Сравнение характеристик и свойств материалов из TPE и EPDM
Термопластичные эластомеры (ТПЭ) представляют собой важный класс материалов и могут быть использованы в широком спектре промышленности. В общем, ТПЭ охватывают множество различных типов структур полимерных материалов и отличаются тем, что они являются мягкими и гибкими, как термореактивная резина, и в то же время могут обрабатываться в расплаве и перерабатываться, как термопласты.
ТПЭ определены Международным институтом производителей синтетического каучука как:
«Полимеры, полимерные смеси или соединения, которые выше температур плавления проявляют термопластичный характер, позволяющий им формоваться в изготовленные изделия, и которые в пределах своего расчетного температурного диапазона обладают эластомерными свойствами без сшивания во время изготовления. Этот процесс является обратимым, и продукт может быть переработан и переделан».
Структура термопластичных эластомеров TPE
По существу, ТПЭ представляют собой блок-сополимеров или физическую смесь полимеров, которые проявляют одновременно термопластичные и эластомерные свойства. Как семейство, ТПЭ охватывают особую группу полимерных материалов, которые подвергаются высокому уровню упругой деформации без сшивания. Они демонстрируют характеристики как термопластов, так и термореактивных каучуков одновременно.
Конструктивно ТПЭ делятся на две категории: смеси и блок-сополимеры. Независимо от того, является ли TPE смесью или блок-сополимером, полимерная система имеет кристаллические и аморфные состояния. Для смесей это достигается механической смесью полукристаллических и аморфных полимеров. Альтернативно, блок-сополимеров состоит из отдельных блоков кристаллических и аморфных в одной полимерной цепи. Эта двойственность структуры объясняет уникальные свойства TPE.
Основанные на блок-сополимере ТПЭ основаны на полимерах, которые имеют твердые и мягкие блоки вдоль основной полимерной цепи. В качестве объемного отклика затвердевание из расплавленного состояния приводит к слиянию кристаллических веществ в твердые блоки, что приводит к характерному термопластичному поведению. И наоборот, аморфные вещества образуют эластомерные мостики, также известные как связующие молекулы, представляющие собой твёрдые блоки, которые придают эластомерное поведение.
Независимо от того, является ли материал ТПЭ сополимером или смесью, твёрдый блок будет иметь температуру плавления или реже температуру стеклования, значительно превышающую комнатную температуру. Соответственно, твёрдый блок будет иметь температуру стеклования или реже температуру плавления, значительно ниже комнатной температуры.
Специфические свойства могут быть получены и адаптированы путем выборочного сочетания структуры и соотношений отдельных фаз. Хотя и жесткая, и твёрдая фазы вносят вклад в общие физические и механические свойства TPE, некоторые ключевые свойства могут быть более тесно связаны с одним или другим веществом. Некоторые ключевые свойства, связанные с отдельными фазами.
Виды TPE (ТПЭ) и каучуков
Существует шесть общих классов коммерческих TPE:
Термрреактивная резина, каучуки EPDM и другие
В отличие от термопластичных эластомеров, термореактивные каучуки представляют собой однофазные материалы без двойной твердой и гибкой фаз. Каучуковые материалы представляют собой макромолекулы натурального или синтетического полимера и могут быть полимеризованы в виде гомополимеров или статистических сополимеров / терполимеров.
Структура каучука аморфная, исключая кристаллические вещества. Из-за этого резиновые материалы подвергаются стеклованию, но не имеют точки плавления. По определению, термореактивные резиновые материалы имеют температуру стеклования ниже комнатной температуры. Это контрастирует с термореактивными пластиковыми материалами, которые имеют температуру стеклования выше условий окружающей среды.
Существует большое разнообразие типов термореактивных резиновых материалов, причем следующие представляют некоторые из наиболее распространенных с их общими сокращениями:
Процесс сшивания в термореактивной резине представляет собой химическую реакцию, которая протекает при относительно высокой температуре в процессе формования. Наиболее распространенными сшивающими агентами являются сера, серосодержащие химические вещества и пероксиды.
Как термопластичные эластомеры, так и термореактивные каучуковые материалы получают свои основные свойства от основного полимера. Однако оба типа материалов содержат составные добавки, которые модифицируют и улучшают конечные свойства соединений. Эти добавки обычно включают армирующие наполнители, не усиливающие наполнители, пластификаторы, стабилизаторы и антидеградирующие вещества, технологические добавки и многие типы специальных усилителей производительности. Термореактивные резиновые смеси также содержат отвердители, активаторы и ускорители отверждения для усиления процесса сшивания.
Сравнение TPE, TPE-S и EPDM
На базовом уровне термопластичные эластомеры проявляют некоторые характеристики термореактивного каучука, но при высокой температуре плавления или размягчения они могут перерабатываться в расплаве, как термопласты. Это позволяет повторно обрабатывать TPE и подвергать их повторной обработке. С точки зрения тех, кто знаком с термопластами, ТПЭ обеспечивают простоту изготовления и гибкость конструкции, которой нет у термореактивной резины.
Одной из последних разработок в области термоэластопластов является TPE-S, где в качестве каучука использован стирол-этилен-бутилен-стирольный блок-сополимер (SEBS).
По сравнению с другими термопластичными материалами, TPE-S обладают преимуществами в свойствах:
Тем не менее, термореактивные резиновые смеси предлагают отличные эксплуатационные преимущества по сравнению с TPE из-за их сшитой структуры. Абсолютные свойства будут сильно зависеть от конкретных сравниваемых соединений. Преимущества TPE преобладают в области обработки, в то время как преимущества, указанные в легкости компаундирования и легкости формования, основаны на своей точке зрения. У тех, кто знаком с работой с термореактивными смесями, могут быть разногласия.
Оба типа материалов: термопластичные эластомеры и термореактивные каучуки, представляют собой различные классы полимерных материалов, предлагающих широкий спектр свойств. Сравнение показывает, что присущие свойства зависят от различных структур, включающих два набора материалов, а также от добавок к составам.
Лучший материал для конкретного применения будет зависеть от многих параметров, включая конструкцию компонента и условия эксплуатации. Производитель уплотнителей TM POLI, хорошо знаком как с термопластичными эластомерами, так и с термореактивными каучуками, для того, чтобы выбрать для Вас наиболее подходящий материал уплотнителя и обеспечить наилучшие шансы на успех Вашего конечного продукта.