Ток уставки чему равен
Ток уставки и ток отсечки
В чем разница между током уставки и током отсечки? Не одно ли это и то же? И как правильно с технической точки зрения назвать ток, который будет влиять на срабатывание тепловой защиты?
Если дать самое общее определение понятию уставки, то оно будет звучать так:
Уставка (уставка срабатывания) – заданное пороговое значение некоей величины или параметра, по достижении которой должно произойти срабатывание оборудования, схемы или иное заранее предусмотренное действие.
В вашем случае должна происходить токовая отсечка: при превышении значения силы тока должен сработать автоматический выключатель, установленный для защиты данного участка электросети. Пороговое значение в данном случае будет и током уставки, и током отсечки. Правда, стоит уточнить: современные автоматические выключатели срабатывают не непосредственно на тепло – на самом деле используются электромагнитные токовые реле. Температура была непосредственным действующим параметром в эпоху плавких предохранителей; вы же, вероятно, все-таки имеете в виду автомат. В этом случае ток уставки и ток отсечки можно считать синонимами.
Можно представить себе ситуацию, в которой эти понятия будут не полностью синонимичны. Например, имеется уставка по току на выполнение какого-либо иного действия, не отсечки. Допустим, по достижении определенной величины силы тока устройство должно подать сигнал в автоматизированную систему управления зданием (например, в системе сгенерируется оповещение диспетчера об увеличении силы тока или тревожное сообщение), но без размыкания цепи. Естественно, речь идет не о коротком замыкании, когда события развиваются настолько быстро, что слать какие-либо оповещения просто бессмысленно. Имеется в виду некое повышение силы тока на небольшую величину, не представляющую опасности для участка электросети, но, тем не менее, повышение, заслуживающее внимания технического персонала. Такое пороговое значение можно назвать током уставки, но не током отсечки.
По достижении же другого, более высокого значения силы тока, уже представляющего опасность, будет происходить размыкание цепи – в этом случае пороговое значение можно с полным правом называть и током отсечки, и током уставки.
Расчет уставок для цифровых устройств релейной защиты
Параметры срабатывания любого устройства релейной защиты должны отвечать требованиям, изложенным ПУЭ [1] (см. главы 3.2, 5.3).
Для правильного выбора уставок срабатывания в руководствах по эксплуатации цифровых устройств релейной защиты, выпускаемых НТЦ «Механотроника», традиционно приводились методики их расчета только для наиболее сложных алгоритмов защиты.
В связи со значительным увеличением количества выпускаемых цифровых устройств и выдвижением новых требований организациями, проводящими аттестацию цифровых устройств для применения их на объектах ОАО «ФСК ЕЭС», в эксплуатационную документацию были введены методики расчета уставок для всех алгоритмов защиты, предусмотренных в цифровых устройствах производства НТЦ «Механотроника».
Для этого предприятие разработало методические указания по расчетам уставок, которые полностью учитывают:
Разработка методических указаний была выполнена специалистами НТЦ «Механотроника» при участии к.т.н. Соловьёва А.Л., заведующего кафедрой релейной защиты и автоматики электрических станций, сетей и систем Петербургского Энергетического института повышения квалификации.
Настоящая публикация открывает серию статей в которых приведены методики расчета уставок, иллюстрированные практическими примерами.
Расчёт уставок токовой отсечки для электродвигателей
Согласно ПУЭ [1] однорелейная токовая отсечка [1], защищающая от многофазных замыканий, в обязательном порядке должна быть предусмотрена для электродвигателей мощностью менее 2 МВт.
В тех случаях, когда однорелейная токовая отсечка не удовлетворяет требованиям чувствительности, то для защиты электродвигателей мощностью менее 2 МВт можно использовать двухрелейную токовую отсечку.
Сразу необходимо отметить, что однорелейная токовая отсечка, в которой использован сигнал, получаемый как разность токов двух фаз, имеет в раз худшую чувствительность, чем двухрелейная схема с двумя трансформаторами тока [2].
ПУЭ рекомендует применять двухрелейную токовую отсечку для защиты электродвигателей мощностью 2 МВт и более, имеющих защиту от однофазных замыканий на землю, действующую на отключение.
Если же защита от однофазных замыканий на землю отсутствует, то для электродвигателей мощностью 2 МВт и более следует применять трехрелейную токовую отсечку с тремя трансформаторами тока.
ПУЭ допускает применять двухрелейную токовую отсечку для защиты электродвигателей мощностью 2 МВт и более, не имеющих защиты от однофазных замыканий на землю. Однако в этом случае необходимо дополнительно предусмотреть защиту от двойных замыканий на землю.
Наиболее просто и полно все требования, изложенные в ПУЭ, реализуются при использовании серийно выпускаемых устройств БМРЗ и БМРЗ-100 предназначенных для защиты синхронных и асинхронных электродвигателей. В ряде исключительных случаев для этих же целей возможно применить устройства БМРЗ и БМРЗ-100 для защиты кабельных и воздушных линий.
Для защиты асинхронных и синхронных электродвигателей используется первая ступень алгоритма максимальной токовой защиты МТЗ с нулевой выдержкой времени.
Упрощенная функциональная схема этого алгоритма приведена на рис. 1.
Рис. 1 Схема алгоритма максимальной токовой защиты
(ТО — первая ступень МТЗ) по [4]
При превышении любым из фазных токов IA, IB, IC уставки соответствующего компаратора 1-3 возникает сигнал «Пуск I>» [2] и при отсутствии блокирующих сигналов начинает отсчет времени элемент выдержки времени 5.
При использовании первой ступени МТЗ в качестве токовой отсечки ТО выдержка времени устанавливается равной нулю. Поэтому сигнал «Откл. I >» на выходе алгоритма появляется после сигнала «Пуск I>» без временной задержки.
Блокирование срабатывания любой ступени МТЗ выполняется элементом 4 как внешним сигналом, так и в цикле АПВ. Сигнал блокирования поступает на элемент 13.
В связи с тем, что в данном алгоритме устанавливается нулевое значение выдержки времени, то необходимость ускорения срабатывания алгоритма (при ручном включении выключателя или в цикле АПВ) отсутствует
В устройствах серий БМРЗ и БМРЗ-100 предусмотрено необходимое количество цифровых реле максимального тока для каждой фазы, поэтому применение предусмотренной в ПУЭ отсечки в виде однорелейной схемы на наш взгляд так же нецелесообразно.
Рассмотрение методики расчета уставок для ТО сопровождается практическими примерами, в которых используется асинхронный двухскоростной двигатель АДО-1600/1000-10/12 с прямым пуском на 1-й скорости.
Исходные данные для расчета
Двигатель участвует в процессе самозапуска, который может осуществляться как на 1-ой, так и на 2-ой скорости.
Максимальное сопротивление токовых цепей со стороны питания электродвигателя (проектное значение) — не более 0,5 Ом.
Для расчета уставок токовой отсечки необходимо знать номинальный ток электродвигателя. Если значение этой характеристики не приведено в документации двигателя, определить его можно по формуле (1):
А
(1)
где — номинальная мощность электродвигателя, кВт; — номинальное линейное действующее напряжение двигателя, кВ; — номинальный к.п.д. электродвигателя; — номинальный коэффициент мощности электродвигателя.
1.1 Значение номинального тока для выбранного нами электродвигателя при работе на 1-й скорости согласно формуле (1) будет равно:
А
(1.1)
1.2 Номинальный ток выбранного нами электродвигателя при работе на 2-ой скорости определим также по формуле (1):
А
(1.2)
По номинальному току электродвигателя необходимо выбрать трансформаторы тока (сигнал с их вторичных обмоток поступает на токовые входы IA, IB, IC цифрового устройства, показанные на рис. 1) с таким коэффициентом трансформации, чтобы при номинальном токе электродвигателя вторичный ток не превышал 5 А. Рекомендуемый диапазон изменения вторичного тока от 1 до 4 А.
1.3 Для найденного по соотношению (1.1) значения тока (197, 3 А) предварительно выбираем трансформаторы тока ТЛМ10-5-82 с сердечником типа Р и коэффициентом трансформации kтр = 200/5.
При кратности тока до 17 и максимальном сопротивлении токовых цепей не более 0,5 Ом трансформаторы тока этого типа имеют погрешность не более 10% [3]. Указанная кратность тока соответствует току в первичной обмотке 3400 А (17×200 А).
Для оценки пригодности выбранного трансформатора тока по погрешности, соответствующей предельной кратности тока необходимо определить максимальные броски пускового тока электродвигателя (рис. 2)
Рис. 2 Пример пусковой характеристики электродвигателя
Принято считать, что процесс пуска электродвигателя завершен, когда пусковой ток станет меньше 1,25 Iном. дв..
Значение максимального пускового тока при прямом пуске электродвигателя с учетом апериодической составляющей находят по формуле (2):
А
(2)
где — коэффициент, учитывающий апериодическую составляющую пускового тока машины, принимается 1,8; — кратность пускового тока машины (как правило, 3 ÷ 8).
1.4. При самозапуске электродвигателя на 1-й скорости
максимальный бросок пускового тока согласно формуле (2) составит:
(2-1)
1.5 Максимальный бросок тока самозапуска электродвигателя при его работе на 2-й скорости составит:
(2-2)
Уставку срабатывания ТО I>>> выбирают такой, чтобы выполнялось соотношение (3):
(3)
1.6 Используя соотношение (3) выбираем уставки срабатывания алгоритма ТО для первой и второй скоростей одинаковыми и равными .
При расчете уставок для двигателей с реакторным пуском максимальный бросок пускового тока двигателя при реакторном пуске определяют по формуле (4):
А
(4)
где — индуктивное сопротивление сети; — индуктивное сопротивление реактора.
Значение полного пускового сопротивления двигателя, входящее в формулу (4) находят по соотношению (5)
Ом
(5)
Обоснование этой формулы можно найти в работе [5] на стр. 22. Полученное таким образом значение используют в соотношении (3).
Для двигателя, работающего в режиме самозапуска, значение тока полученное по формулам (2) или (4) необходимо увеличить в 1,3 — 1,4 раза, так как в этом режиме напряжение на двигателе может достигать 1,3- 1,4 номинального значения.
Выбранный ранее трансформатор тока (см. п. 1.3 Примера) проверяем на соблюдение требования, установленного в п.п. в п. 3.2.29 ПУЭ [1]
(1,1I>>>) >>1 = 1,1×3350 = 3685) > (17×200 = 3400)
(6-1)
Из соотношения (6-1) видно, что требование (6) при применении данного трансформатора тока не выполняется.
В связи с тем, что погрешность выбранного ранее трансформатора тока с коэффициентом трансформации kрт = 200/5 превышает 10% при токе двигателя, превышающем уставку срабатывания на 10% (),выбираем трансформаторы тока этого же типа, но с коэффициентом трансформации 300/5.
Проверим выполнения требования (6) для такого трансформатора.
1.8 Находим
>> (первая ступень), I>> (вторая ступень), I> (третья ступень)
Гондуров С.А., Михалев С.В.,
Пирогов М.Г., Захаров О.Г.
НТЦ «Механотроника», С-Петербург
ОПРЕДЕЛЕНИЕ ТОКОВ УСТАВКИ СРАБАТЫВАНИЯ МАКСИМАЛЬНОЙ ТОКОВОЙ ЗАЩИТЫ АППАРАТОВ
Уставка тока срабатывания максимальной токовой защиты (МТЗ) автоматических выключателей и магнитных пускателей:
для защиты магистрали
; (6.1)
для защиты ответвления
(6.2)
где — пусковой ток наиболее мощного двигателя на участке (для магистрали) или пусковой ток отдельного двигателя, А.
— сумма номинальных токов остальных двигателей А.
Чувствительность выбранной защиты проверяется по формуле
(6.3)
ПРИЛОЖЕНИЯ
Приложение 1. Технические характеристики шахтных установок
Технические характеристики очистных комбайнов
Тип | U, В | Мощность электродвигателей, кВт: | кпд, hн | соsj | Iп/Iн | |
установленная | привода резания | привода подачи | ||||
MB 280Е | 279,5 | 2х120 | 2х16 | 90.2 | 0.89 | 6.5 |
К85 | 92.5 | 0.87 | 6.6 | |||
1К101 | 0.86 | 6.7 | ||||
УКД200 | 91.5 | 0.88 | 6.8 | |||
УКН400 | 2х180 | 2х30 | 0.89 | 6.6 | ||
MB 320Е | 321,5 | 2х135 | 2х22 | 92.5 | 0.87 | 6.7 |
MB 350Е | 351,5 | 2х150 | 2х22 | 92.4 | 0.85 | 6.9 |
MB 390Е | 391,5 | 2х170 | 2х22 | 92.7 | 0.86 | 6.8 |
MB 450Е | 451,5 | 2х200 | 2х22 | 90.2 | 0.87 | 6.6 |
МВ 850Е | 2х350 | 2х45 | 91.5 | 0.89 | 6.7 | |
МВ 580Е | 581,5 | 2х250 | 2х37 | 92.7 | 0.85 | 6.6 |
МВ 612Е | 2х250 | 2х45 | 92.5 | 0.86 | 6.8 | |
МВ 700Е | 697,5 | 2х300 | 2х45 | 91.5 | 0.87 | 6.7 |
МВ 712Е | 2х300 | 2х45 | 0.85 | 6.6 | ||
К500 | 2х250 | 2х45 | 0.89 | 6.9 | ||
KSW460N | 2×250 | 92.7 | 0.85 | 6.7 | ||
KSW500 | 2×250 | 90.2 | 0.88 | 6.5 | ||
КДК500 | 597,5 | 2х250 | 2х45 | 92.5 | 0.87 | 6.8 |
КДК700 | 2х355 | 2х60 | 0.85 | 6.7 | ||
KGE710F | 2х300 | 2х45 | 92.7 | 0.89 | 6.6 | |
EL100 | 2×500 | 2×75 | 92.5 | 0.86 | 6.8 | |
EL600 | 2×450 | 2×67.5 | 91.5 | 0.87 | 6.5 | |
УКД300 | 2х180 | 2х30 | 0.89 | 6.7 | ||
KSW475/2B | 200, 250 | 90.2 | 0.87 | 6.5 | ||
KSW460NE | 2×300 | 2×45 | 91.5 | 0.89 | 6.7 | |
4LS20 | 2×285 | 2×50 | 0.86 | 6.8 | ||
SL300 | 2×480 | 2×80 | 92.5 | 0.87 | 6.6 | |
SL500 | 2×450 | 2×50 | 91.8 | 0.85 | 6.9 | |
6LS2 | 2×410 | 2×45 | 92.7 | 0.89 | 6.8 | |
7LS1 | 2×375 | 2×50 | 92.5 | 0.85 | 6.5 | |
7LS2 | 2×375 | 2×80 | 0.86 | 6.7 |
Таблица П1.1 (продолжение)
Тип | U, В | Мощность электродвигателей, кВт: | кпд, hн | соsj | Iп/Iн |
установленная | привода резания | привода подачи | |||
7LS4 | 2×610 | 2×110 | 92.7 | 0.85 | 6.9 |
4LS5 | 2×335 | 2×40 | 91.5 | 0.89 | 6.6 |
KSW1140E | 2×350 | 2×40 | 0.87 | 6.8 | |
KSW880E | 2×350 | 2×60 | 91.8 | 0.85 | 6.5 |
KSW620E | 2×350 | 2×55 | 92.7 | 0.86 | 6.7 |
KGE1250F | 2×500 | 2×60 | 92.5 | 0.89 | 6.8 |
EL3000 | 2×800 | 2×135 | 91.5 | 0.86 | 6.7 |
EL1000 | 2×600 | 2×100 | 0.87 | 6.6 | |
EL600 | 2×600 | 2×67.5 | 0.89 | 6.5 |
Технические характеристики вентиляторов местного проветривания
Тип | U, В | Р, кВт | кпд, hн | соsj | Iп/Iн |
ВМЭ-6 | 91,5 | 0,85 | 6,5 | ||
ВМЭ-6/1 | 0,86 | 6,9 | |||
ВМЭ-8 | 91,8 | 0,86 | 6,4 | ||
ВМЭ-2.10 | 92,1 | 0,85 | 6,5 | ||
ВМЭ-12А | 91,9 | 0,86 | 6,8 | ||
ВМЭ-6 | 0,86 | 6,7 | |||
ВМЭ-6/1 | 93,1 | 0,85 | 6,5 | ||
ВМЭ-8 | 0,87 | 6,6 | |||
ВМЭ-2.10 | 93,5 | 0,86 | 6,4 | ||
ВМЭ-12А | 92,5 | 0,88 | 6,8 | ||
ВМЭ-8-90 | 0,87 | 6,7 | |||
ВМЭ-12 | 92,3 | 0,85 | 6,8 | ||
ВМЭ2-10-160 | 0,88 | 6,5 |
Технические характеристики скребковых конвейеров
Тип | U, В | Р, кВт | кпд, hн | соsj | Iп/Iн |
КСЮ271 | 90.2 | 0.87 | 6.5 | ||
КСЮ381 | 91.5 | 0.89 | 6.7 | ||
Анженра-26 | 0.86 | 6.8 |
Таблица П1.3 (продолжение)
Тип | U, В | Р, кВт | кпд, hн | соsj | Iп/Iн |
Анженра-30 | 92.5 | 0.87 | 6.6 | ||
Анженра-34 | 91.8 | 0.85 | 6.9 | ||
Анженра-38 | 92.7 | 0.89 | 6.8 | ||
Юрмаш 850 | 2х400 | 92.5 | 0.85 | 6.5 | |
Юрмаш 950 | 3х400 | 0.86 | 6.7 | ||
GLINIK-260 | 3х400 | 92.7 | 0.85 | 6.9 | |
GLINIK-340 | 3х350 | 91.5 | 0.89 | 6.6 | |
GLINIK-340 | 3х400 | 0.87 | 6.8 | ||
AFC | 3х350 | 92.7 | 0.86 | 6.7 | |
PSZ-750 | 3х400 | 92.5 | 0.89 | 6.8 | |
PSZ-1100 | 3х350 | 91.5 | 0.86 | 6.7 | |
RYBNIK 850 | 3х350 | 0.87 | 6.6 | ||
RYBNIK 1100 | 3х400 | 0.89 | 6.5 |
Технические характеристики перегружателей
Тип | U, В | Р, кВт | кпд, hн | соsj | Iп/Iн |
ПС271 | 91.5 | 0.89 | 6.7 | ||
ПС281 | 92.7 | 0.85 | 6.6 | ||
ПСН1100 | 92.5 | 0.86 | 6.8 | ||
ПСП-26 | 91.5 | 0.87 | 6.7 | ||
ПСП-26-03 | 0.85 | 6.6 | |||
GROT-620 | 2×55 | 0.89 | 6.9 | ||
GROT-720 | 2×55 | 92.7 | 0.85 | 6.7 | |
GLINIK-724 | 2х200 | 90.2 | 0.88 | 6.5 | |
GLINIK-824 | 2х250 | 92.5 | 0.87 | 6.8 | |
GLINIK-1024 | 2х250 | 0.85 | 6.7 | ||
GROT 850 | 2×200 | 92.7 | 0.89 | 6.6 | |
GROT-1400 | 2×400 | 92.5 | 0.86 | 6.8 | |
GROT-1100 | 2×200 | 91.5 | 0.87 | 6.5 | |
GROT-950 | 2×160 | 0.89 | 6.7 |
Приложение 2. Справочные данные
Технические характеристики кабеля BITmining Ò YHKGYFtZnyn
Сечение рабочей жилы, мм 2 | Активное сопротивление жилы, Ом/км | Индуктивное сопротивление, Ом/км | Длительная нагрузка, А |
1,83 | 0,108 | ||
1,15 | 0,103 | ||
0,727 | 0,098 | ||
0,524 | 0,096 | ||
0,387 | 0,091 | ||
0,268 | 0,088 | ||
0,193 | 0,087 | ||
0,153 | 0,085 | ||
0,124 | 0,084 | ||
0,0991 | 0,084 |
Рабочее напряжение: 660/1140 В
Технические характеристики кабеля BITmining Ò YHKGXSFtZnyn
Сечение рабочей жилы, мм 2 | Активное сопротивление жилы, Ом/км | Индуктивное сопротивление, Ом/км | Длительная нагрузка, А |
1,83 | 0,108 | ||
1,15 | 0,103 | ||
0,727 | 0,098 | ||
0,524 | 0,096 | ||
0,387 | 0,091 | ||
0,268 | 0,088 | ||
0,193 | 0,087 | ||
0,153 | 0,085 | ||
0,124 | 0,084 | ||
0,0991 | 0,084 |
Рабочее напряжение: 660/1140 В
Технические характеристики кабеля ЭВТ
Сечение рабочей жилы, мм 2 | Активное сопротивление жилы, Ом/км | Индуктивное сопротивление, Ом/км | Длительная нагрузка, А |
1140 В | 6000 В | ||
0,72 | 0,091 | – | |
0,515 | 0,087 | ||
0,361 | 0,083 | ||
0,287 | 0,080 | ||
0,191 | 0,078 | ||
0,154 | 0,076 |
Рабочее напряжение: 1140/6000 В
Технические характеристики кабеля КГЭЖШ, КГЭЖТ
Сечение рабочей жилы, мм 2 | Длительная нагрузка, А |
КГЭЖШ | КГЭЖТ |
4,0 | |
6,0 |
Рабочее напряжение: 1140 В
Технические характеристики кабеля КГТЭкШ
Сечение рабочей жилы, мм 2 | Длительная нагрузка, А |
3300 В | 6300 В |
Рабочее напряжение: 3300/6300 В
Технические характеристики кабеля КШВЭПбШв
Сечение рабочей жилы, мм 2 | Длительная нагрузка, А |
1140 В | 6000 В |
6,0 | – |
Рабочее напряжение: 1140/6000 В
Технические характеристики пускателей электромагнитных шахтных ПЭШ (Р)-ХХ
Номинальный ток, А | Мощность двигателя, кВт | Коммутационная способность | Пределы уставок, А | Шаг |
Вкл. | Откл. | |||
660 В | ||||
5,5-8,0 | ||||
9,5-14 | ||||
13-19 | ||||
126-441 | ||||
160-560 | ||||
250-875 | ||||
320-1120 | ||||
500-1750 | ||||
1140 В | ||||
126-441 | ||||
160-560 | ||||
250-875 | ||||
320-1120 | ||||
500-1750 |
Технические данные выключателей АФВ
Технические характеристики пускателя APK9U
Параметры | Значения | Единица измерения |
Номинальное напряжение | 3 АС 1140/660 | В. |
Максимальный ток | А. | |
Ток отключения | кА. | |
Количество контакторов | до 9 | шт. |
Технические характеристики станции управления EH-dG3-3.3/1
Параметры | Значения | Единица измерения |
Номинальное напряжение | В. | |
Номинальный длительный ток | А. | |
Максимальный длительный ток выходов | А. | |
Количество главных выходов | шт. | |
Предельная отключающая способность токов КЗ | кА. | |
Степень защиты | IP54 |
Технические характеристики станции управления
Параметры | Значения | Единица измерения |
Номинальное напряжение | 1140 или 660 | В. |
Номинальный длительный ток | А. | |
Максимальный длительный ток выходов | А. | |
Количество главных выходов | до 6 | шт. |
Таблица П2.10 (продолжение)
Параметры | Значения | Единица измерения |
Предельная отключающая способность токов КЗ | кА. | |
Количество выходов цепей 127 В | ||
Степень защиты | IP54 |
Технические характеристики станции управления
Параметры | Значения | Единица измерения |
Номинальное напряжение | 1140 или 660 | В. |
Номинальный длительный ток | А. | |
Максимальный Длительный ток выходов: Выход 111 Выход 121 Выход 131 | А. | |
Количество главных выходов | до 6 | шт. |
Предельная отключающая способность токов КЗ | кА. | |
Количество выходов цепей 127 В | ||
Степень защиты | IP54 |
Технические характеристики комплектного распределительного устройства КРУВ-6/10М-УХЛ5-ВВ
Параметры | Значения | Единица измерения |
Номинальное напряжение | 6/10 | кВ. |
Номинальный ток выключателя | А. | |
Мощность отключения | МВА. | |
Предельная отключающая способность токов КЗ | кА. | |
Цифровые интерфейсы | RS-485, другие по заказу | |
Степень защиты | IP54 |
Технические характеристики трансформаторной подстанции КТПВ
Параметр | КТПВ-100 | КТПВ-160 | КТПВ-250 | КТПВ-400 | КТПВ-630 | КТПВ-1000 | КТПВ-1250 |
Номинальная мощность, кВ×А | |||||||
Номинальное напряжение ВН, кВ | 6,0 | ||||||
Номинальное напряжение НН, кВ | 0,69 | 0,69 | 0,69 | 0,69/1,2 | 0,69/1,2 | 1,2 | 1,2 |
Напряжение короткого замыкания, % | 3,0 | 3,6 | 3,6 | 3,4 | 3,5 | 5,0 | 5,5 |
Диапазон регулирования, % | ±5 | ||||||
Потери КЗ, кВт | 1,6 | 2,2 | 2,8 | 3,4 | 4,7 | 5,3 |
Технические характеристики трансформаторной подстанции
Параметр | EVS-400 | EVS-630 | EVS-1000 | EVS-1250 | EVS-1500 |
Номинальная мощность, кВ×А | |||||
Номинальное напряжение ВН, В | |||||
Номинальное напряжение НН, В | 500-1200 | ||||
Напряжение короткого замыкания, % | 3,4 | 3,5 | 5,0 | 5,5 | 5.7 |
Потери КЗ, Вт | |||||
Диапазон регулирования, % | ±5 |
Таблица П2.14 (продолжение)
Технические характеристики трансформаторной подстанции
Параметр | EVS-1750 | EVS-2000 | EVS-2500 | EVS-3000 | EVS-3500 |
Номинальная мощность, кВ×А | |||||
Номинальное напряжение ВН, В | |||||
Номинальное напряжение НН, В | 500-1200 | ||||
Напряжение короткого замыкания, % | 6,0 | 6,2 | 6,5 | 6,7 | 7,0 |
Потери КЗ, Вт | |||||
Диапазон регулирования, % | ±5 |
Технические характеристики трансформаторной подстанции
Параметр | TN6-1500 | TN6-1750 | TN6-2100 |
Номинальная мощность, кВ×А | |||
Номинальное напряжение ВН, В | |||
Номинальное напряжение НН, В | |||
Напряжение короткого замыкания, % | 5.5 | 5.7 | 6.0 |
Потери КЗ, Вт | |||
Диапазон регулирования, % | ±5 |
Технические характеристики трансформаторной подстанции
Параметр | EH-d30-1500 | EH-d31-1750 | EH-d31-2100 | EH-d31-2600 |
Номинальная мощность, кВ×А | ||||
Номинальное напряжение ВН, В | ||||
Номинальное напряжение НН, В | ||||
Напряжение короткого замыкания, % | 4.5 | 4.0 | 4.0 | 4.5 |
Потери КЗ, Вт | ||||
Диапазон регулирования, % | ±5 |
Приложение 3. Исходные данные
№ вар. | Оборудование | Длина кабелей, км. | Sкз, МВА | ||||||
Комбайн | Конвейер | Вентилятор | Перегружатель | L1, 6 кВ | L2, (0,66-3,3) кВ | L3, комб. | L4, конв. | L5, перегр. | L6, вент. |
MB 280Е | КСЮ271 | ВМЭ-6 | ПС271 | 0,5 | 0,3 | 0,32 | 0,22 | 0,21 | 0,25 |
К85 | КСЮ381 | ВМЭ-6/1 | ПС281 | 0,6 | 0,25 | 0,32 | 0,21 | 0,2 | 0,24 |
1К101 | Анженра-26 | ВМЭ-8 | ПСН1100 | 0,7 | 0,3 | 0,3 | 0,2 | 0,32 | 0,22 |
УКД200 | Анженра-30 | ВМЭ-2.10 | ПСП-26 | 0,8 | 0,25 | 0,25 | 0,32 | 0,32 | 0,21 |
УКН400 | Анженра-34 | ВМЭ-12А | ПСП-26-03 | 0,9 | 0,3 | 0,24 | 0,32 | 0,3 | 0,2 |
MB 320Е | Юрмаш 850 | ВМЭ-6 | GLINIK-724 | 1,0 | 0,26 | 0,23 | 0,3 | 0,21 | 0,32 |
MB 350Е | Юрмаш 950 | ВМЭ-6/1 | GLINIK-824 | 1,1 | 0,31 | 0,22 | 0,25 | 0,2 | 0,25 |
MB 390Е | GLINIK-260 | ВМЭ-8 | GLINIK-1024 | 1,0 | 0,32 | 0,21 | 0,24 | 0,32 | 0,24 |
MB 450Е | Юрмаш 850 | ВМЭ-2.10 | GROT 850 | 0,9 | 0,25 | 0,2 | 0,22 | 0,32 | 0,22 |
МВ 850Е | Юрмаш 950 | ВМЭ-12А | GLINIK-724 | 0,8 | 0,24 | 0,32 | 0,21 | 0,3 | 0,21 |
МВ 580Е | GLINIK-260 | ВМЭ-8-90 | GLINIK-824 | 0,7 | 0,32 | 0,32 | 0,2 | 0,21 | 0,2 |
МВ 612Е | Юрмаш 850 | ВМЭ-12 | GLINIK-1024 | 0,85 | 0,32 | 0,3 | 0,32 | 0,2 | 0,32 |
МВ 700Е | Юрмаш 950 | ВМЭ2-10-160 | GROT 850 | 0,95 | 0,3 | 0,25 | 0,32 | 0,32 | 0,25 |
МВ 712Е | GLINIK-260 | ВМЭ-6 | GLINIK-724 | 1,05 | 0,25 | 0,24 | 0,3 | 0,32 | 0,24 |
К500 | Юрмаш 850 | ВМЭ-6/1 | GLINIK-824 | 1,0 | 0,24 | 0,23 | 0,25 | 0,3 | 0,22 |
KSW460N | Юрмаш 950 | ВМЭ-8 | GLINIK-1024 | 0,8 | 0,23 | 0,22 | 0,24 | 0,21 | 0,21 |
KSW500 | GLINIK-260 | ВМЭ-2.10 | GROT 850 | 0,9 | 0,22 | 0,21 | 0,22 | 0,2 | 0,2 |
КДК500 | Юрмаш 850 | ВМЭ-12А | GLINIK-724 | 0,78 | 0,25 | 0,2 | 0,21 | 0,32 | 0,32 |
КДК700 | Юрмаш 950 | ВМЭ-8-90 | GLINIK-824 | 0,65 | 0,2 | 0,32 | 0,2 | 0,32 | 0,25 |
KGE710F | GLINIK-260 | ВМЭ-12 | GLINIK-1024 | 0,98 | 0,3 | 0,32 | 0,32 | 0,3 | 0,24 |
EL100 | Юрмаш 850 | ВМЭ2-10-160 | GROT 850 | 0,55 | 0,3 | 0,3 | 0,32 | 0,21 | 0,22 |
EL600 | Юрмаш 950 | ВМЭ-6 | GLINIK-724 | 0,65 | 0,25 | 0,25 | 0,3 | 0,2 | 0,21 |
УКД300 | GLINIK-260 | ВМЭ-6/1 | GLINIK-824 | 0,75 | 0,3 | 0,24 | 0,25 | 0,32 | 0,2 |
KSW475/2B | Юрмаш 850 | ВМЭ-8 | GLINIK-1024 | 0,7 | 0,25 | 0,23 | 0,24 | 0,32 | 0,32 |
KSW460NE | Юрмаш 950 | ВМЭ-2.10 | GROT 850 | 0,8 | 0,3 | 0,22 | 0,22 | 0,3 | 0,25 |
4LS20 | GLINIK-260 | ВМЭ-12А | GROT 850 | 0,9 | 0,26 | 0,21 | 0,21 | 0,21 | 0,24 |
SL300 | GLINIK-340 | ВМЭ-2.10 | GROT-1400 | 0,9 | 0,31 | 0,2 | 0,2 | 0,2 | 0,22 |
SL500 | GLINIK-340 | ВМЭ-12А | GROT-1100 | 1,1 | 0,32 | 0,32 | 0,32 | 0,32 | 0,21 |
6LS2 | RYBNIK 850 | ВМЭ-8-90 | GROT-950 | 1,0 | 0,25 | 0,32 | 0,32 | 0,32 | 0,2 |
7LS1 | AFC | ВМЭ-12 | GROT-1400 | 0,95 | 0,24 | 0,3 | 0,3 | 0,3 | 0,32 |
7LS2 | PSZ-750 | ВМЭ2-10-160 | GROT-1100 | 0,8 | 0,32 | 0,25 | 0,25 | 0,21 | 0,25 |
7LS4 | PSZ-1100 | ВМЭ-2.10 | GROT-950 | 0,8 | 0,32 | 0,24 | 0,24 | 0,2 | 0,24 |
4LS5 | RYBNIK 850 | ВМЭ-12А | GROT-1400 | 0,7 | 0,3 | 0,23 | 0,22 | 0,32 | 0,22 |
KSW1140E | RYBNIK 1100 | ВМЭ-8-90 | GROT-1100 | 0,69 | 0,25 | 0,22 | 0,21 | 0,32 | 0,21 |
KSW880E | GLINIK-340 | ВМЭ-12 | GROT-950 | 0,68 | 0,24 | 0,21 | 0,2 | 0,3 | 0,2 |
KSW620E | GLINIK-340 | ВМЭ2-10-160 | GROT-1400 | 0,78 | 0,23 | 0,2 | 0,32 | 0,21 | 0,32 |
KGE1250F | RYBNIK 850 | ВМЭ-2.10 | GROT-1100 | 0,95 | 0,22 | 0,25 | 0,32 | 0,2 | 0,25 |
EL3000 | AFC | ВМЭ-12А | GROT-950 | 0,85 | 0,21 | 0,24 | 0,3 | 0,32 | 0,24 |
EL1000 | PSZ-750 | ВМЭ-8-90 | GROT-1400 | 0,75 | 0,2 | 0,23 | 0,25 | 0,32 | 0,22 |
EL600 | PSZ-1100 | ВМЭ-12 | GROT-1100 | 0,95 | 0,3 | 0,25 | 0,24 | 0,3 | 0,21 |
Приложение 4. Вариант расчетной схемы