Что такое экстремумы функции: критические точки максимума и минимума
Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.
Что такое экстремум?
В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.
Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:
Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.
Это интересно! Свойства натуральных логарифмов: график, основание, функции, предел, формулы и область определения
Экстремумы производной функции
Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.
Производная функция
Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.
Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.
Это интересно! Как определить определенные интегралы от нуля, константы и с доказательством
Острый экстремум
Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.
Острый экстремум Важно! Процесс нахождения точек острого экстремума функции называется дифференцированием и используется как в школьном курсе изучения алгебры и начала анализа, так и в ходе освоения высшей математики в университете.
Экстремальное значение функции
Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.
Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:
Экстремальное значение функции Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.
Необходимое условие экстремума функции
Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.
Точки минимума и максимума
Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.
Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.
Полное исследование значения
Построение графика значения
1. Определение точек возрастания и убывания значений.
2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.
3. Процесс определения изменений положения на графике.
4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.
5. Создание сводной таблицы исследования с точки зрения определения ее координат.
6. Нахождение промежутков возрастания и убывания крайних и острых точек.
7. Определение выпуклости и вогнутости кривой.
8. Построение графика с учетом исследования позволяет найти минимум либо максимум.
Основным элементом при необходимости работы с экстремумами является точное построение его графика.
Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.
Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.
Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.
Точки максимума и минимума функции сопровождаются более сложными построениями графика. Это обусловлено более глубокой необходимостью прорабатывать проблему острого экстремума.
Необходимо также находить производную сложной и простой функции, так как это одно из самых главных понятий проблематики экстремума.
Экстремум функционала
Для того чтобы отыскать вышеозначенное значение, необходимо придерживаться следующих правил:
Используются также такие понятия, как слабый минимум и сильный минимум. Это необходимо учитывать при определении экстремума и точного его расчета. При этом острый функционал – это поиск и создание всех необходимых условий для работы с графиком функции.
Это интересно! Легкие правила округления чисел после запятой
Экстремумы функции. 10 класс.
Исследование функции. Экстремумы функции bezbotvy
Вывод
После прочтения и осознания данной статьи любой новичок в математике имеет возможность понять возможности острых экстремумов в том виде, в каком они используются в образовательном процессе. Вышеперечисленные моменты позволяют разобраться в крайних точках без помощи репетиторов.
Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.
Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.
Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.
Минимумы и максимумы вместе именуют экстремумами функции.
Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.
В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю.
Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.
Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. \(y\). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, \(-5\) точка минимума (или точка экстремума), а \(1\) – минимум (или экстремум).
Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?
Давайте вместе найдем количество точек экстремума функции по графику производной на примере:
Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось \(x\)).
Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?
Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:
— Производная положительна там, где функция возрастает. — Производная отрицательна там, где функция убывает.
С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.
Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди \(-13\), \(-11\), \(-9\),\(-7\) и \(3\).
Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.
\(-11\): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что \(-11\) – это минимум.
\(- 9\): функция возрастает, а потом убывает – максимум.
Все вышесказанное можно обобщить следующими выводами:
— Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус. — Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.
Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?
Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:
Всё! Точки максимумов и минимумов найдены.
Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.
Пример(ЕГЭ). Найдите точку максимума функции \(y=3x^5-20x^3-54\). Решение: 1. Найдем производную функции: \(y’=15x^4-60x^2\). 2. Приравняем её к нулю и решим уравнение:
3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:
Теперь очевидно, что точкой максимума является \(-2\).
Наибольшее или наименьшее значение функции на промежутке называется глобальным экстремумом.
Глобальный экстремум может достигаться либо в точках локального экстремума, либо на концах отрезка.
Необходимое условие экстремума
(Необходимое условие экстремума)
Не в каждой своей критической точке функция обязательно имеет максимум или минимум.
Первое достаточное условие экстремума
(Первое достаточное условие экстремума)
Решение. Находим производную заданной функции:
Второе достаточное условие экстремума
(Второе достаточное условие экстремума)
Понятие экстремума функции не по зубам? Тебе ответит эксперт через 10 минут!
Решение. Находим первую производную заданной функции:
Находим точки, в которых первая производная равна нулю:
Вторая производная заданной функции:
Остались вопросы?
Здесь вы найдете ответы.
Экстремум представляет собой значение функции на определенном интервале в момент достижения им минимального или максимального показания. Под понятием «экстремумы» или по-другому минимумы/максимумы подразумевается значение функции (у).
Если в определенной точке достигается экстремум или, иными словами, максимальное/минимальное значение функции на заданном интервале, то эта точка носит название точки экстремума. Из этого следует, что при достижении минимума, точка экстремума будет названа точкой минимума, и, наоборот, при достижении максимума эта точка будет называться точкой максимума. В случае, когда указываются точки экстремумов (или минимумов/максимумов) подразумеваются иксы, в которых достигаются минимальные или максимальные значения.
Под понятием «минимум функции» имеется в виду та точка на ней, в которой функция имеет значение, являющееся наименьшим среди всех значений, приобретаемых ею в любой из других соседних точек. Другими словами, это означает, что в случае, когда функция, достигнув определенной точки, прекращает падать, а, наоборот, наблюдается ее рост, то данная точка и представляет собой точку ее минимума.
Для ответа на поставленный вопрос нужно отыскать точку минимума указанной функции, в которой ее значение перестает падать. Это можно сделать следующим образом:
Предположив, что минимальное значение данной функции равно 0, можно переписать равенство в следующем виде:
Сократим данное уравнение на 4:
Получившееся равенство также может быть записано в следующем виде после перемены местами слагаемых:
Распишем слагаемые в ином виде, чтобы избавиться от третьей степени:
Это же уравнение может выглядеть так:
Теперь для упрощения можно переписать уравнение в таком виде:
В этом случае х = 1
Знаками «+» и «-» обозначены значения производной.
После проведенных вычислений было установлено, что х = 1, что является точкой минимума функции:
Точкой максимума называется то значение х, достигнув которого, производная начинает менять свой знак с плюса на минус. Зная это, можно перейти к поиску точки максимума для функции, указанной в задании.
Для этого нужно начать с поиска производной, используя следующую формулу:
Подставляем приведенные в задании значения и получаем:
Теперь следует приравнять производную к 0 и начать решать получившееся уравнение:
Упростим уравнение и получим:
Избавимся от минусов в уравнении:
Отсюда следует, что:
Можно сделать вывод о том, что х = 1,5.
Запишем производную данной функции:
А затем приравняем ее к 0:
Это позволяет сделать вывод о том, что:
Получается, что, если x 3/2, то производная y’ > 0, и в этом случае функция возрастает.
x =3/2=1,5 – это единственная точка экстремума, которая является точкой минимума.
Критическая точка функции представляет собой ту точку, при пересечении с которой производная данной функции становится равной 0, либо она вовсе не существует.
Для начала нужно определить, что под критической точкой функции подразумевается та точка, при пересечении с которой производная приобретает нулевое значение, либо же эта производная просто не существует в этой точке, что означает, что функцию в данной точке невозможно дифференцировать.
Проверим, применимо ли это утверждение к упомянутой в задании функции:
Приравняем производную функции к 0:
f ‘(x) = 0, это значит, что 2sin2x-3 = 0.
sin2x= 3 2 не имеет решения
Ответ: заданная функция не имеет критических точек и существует при любых х.
Под критическими точками функции понимаются те точки, в которых ее производная равна 0 или вовсе не существует.
Экстремумы функции, их необходимый и достаточный признаки
Нахождение эктремумов функции может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графиков. Кстати, будет полезным открыть в новом окне материал Свойства и графики элементарных функций.
Рассмотрим график непрерывной функции (рисунок снизу).
Определение. Точка x 1 области определения функции f(x) называется точкой максимума функции, если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f(x 0 ) > f(x 0 + Δx) ). В этом случае говорят, что функция имеет в точке x 1 максимум.
Определение. Точка x 2 области определения функции f(x) называется точкой минимума функции, если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f(x 0 ) 0 + Δx) ). В этом случае говорят, что функция имеет в точке x 2 минимум.
Определение. Точки, в которых производная функции равна нулю или не существует, называются критическими точками.
Пример 1. Рассмотрим функцию .
В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.
Итак, чтобы определить точки экстремума функции, требуется выполнить следующее:
Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.
Пример 2. Найти экстремумы функции .
Решение. Найдём производную функции:
.
Приравняем производную нулю, чтобы найти критические точки:
.
Так как для любых значений «икса» знаменатель не равен нулю, то приравняем нулю числитель:
.
То есть, точка x = 3 является точкой минимума.
Найдём значение функции в точке минимума:
.
Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.
Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.
Локальный характер экстремумов функции
Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .
Ищем экстремумы функции вместе
Пример 3. Найти экстремумы функции и построить её график.
Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.
Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .
Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).
Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.
Пример 4. Найти экстремумы функции и построить её график.
Областью определения функции является вся числовая прямая, кроме точки , т.е. .
Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .
Находим производную и критические точки функции:
1) ;
2) ,
но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.
Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .
Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:
(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим
,
т.е. если , то .
Найти экстремумы функции самостоятельно, а затем посмотреть решение
Пример 5. Найти экстремумы функции .
Пример 6. Найти экстремумы функции .
Пример 7. Найти экстремумы функции .
Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.
Продолжаем искать экстремумы функции вместе
Пример 8. Найти экстремумы функции .
Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .
Найдём первую производную функции:
Найдём критические точки функции:
Точки и не могут быть точками экстремума, так как находятся на границе области определения функции. В точке производная функции меняет знак с плюса на минус, а в точке — с минуса на плюс. Следовательно, — точка максимума, а точка — точка минимума функции.
Найдём значения функции в этих точках:
Таким образом, экстремумы функции:
.
Пример 9. Найти экстремумы функции .
Решение. Найдём область определения функции.
Найдём первую производную функции:
Найдём критические точки функции:
Таким образом, у данной функции две критические точки: и . Определим значения производной в критических точках. При переходе через точку производная функции продолжает убывать (сохраняет знак минус), а при переходе через точку — начинает возрастать (меняет знак с минуса на плюс). Следовательно, — точка минимума функции.
Найдём значение функции в точке минимума:
Таким образом, минимум функции:
.
Пример 10. Найти экстремумы функции .
Решение. Найдём первую производную функции:
.
Найдём критические точки функции:
.
Так как для любого действительного x должно выполняться условие , то
.
Таким образом, данная функция имеет одну критическую точку. Определим значения производной в критической точке. При переходе через точку производная функции начинает убывать (меняет знак с плюса на минус). Следовательно, — точка максимума функции.