Как назвал резерфорд изотоп водорода

Водород как химический элемент таблицы Менделеева

Как был открыт Водород

Как назвал резерфорд изотоп водорода. Смотреть фото Как назвал резерфорд изотоп водорода. Смотреть картинку Как назвал резерфорд изотоп водорода. Картинка про Как назвал резерфорд изотоп водорода. Фото Как назвал резерфорд изотоп водорода

Открытие водорода было осуществлено в 1671 году англо-ирландским естествоиспытателем Робертом Бойлем. Он провел и описал реакцию между металлическими опилками и разбавленными кислотами, которые приводят к образованию газообразного водорода. В 1766 году английский естествоиспытатель Генри Кавендиш признал газообразный водород как отдельное вещество. Он назвал газ из реакции металл-кислота «горючим воздухом». В 1783 году французский химик Антуан Лавуазье дал химическому элементу современное название «водород», которое в переводе с греческого означает «создатель воды».

Как назвал резерфорд изотоп водорода. Смотреть фото Как назвал резерфорд изотоп водорода. Смотреть картинку Как назвал резерфорд изотоп водорода. Картинка про Как назвал резерфорд изотоп водорода. Фото Как назвал резерфорд изотоп водорода

Впервые водород был сжижен Джеймсом Дьюаром в 1898 году с использованием регенеративного охлаждения и его же изобретения «вакуумной колбы». В 1899 году он же вывел водород уже в твердом состоянии. В последующем начали выявлять изотопы водорода. Уже в 1931 году Гарольд Юри открыл Дейтерий. Это изотоп водорода, который имеет атомную массу равную 2 и обозначается 2 H. Еще через три года в 1934 году произошло открытие Трития, которым обязаны Эрнесту Резерфорду, Марку Олифанту и Полу Хартеку. Этот химический элемент так же является изотопом водорода, но уже с атомной массой равной 3 и обозначается 3 H. В дальнейшем было множество открытий с применением Водорода и его изотопов начиная от двигателей и заканчивая бомбами.

Изотопы водорода

Водород имеет всего 3 встречающихся свободно в природе изотопа:

Протий представляет собой изотоп водорода, ядро которого состоит из 1 протона. Протий является самым легким изотопом и обозначается 1 H. Этот изотоп является стабильным, так как полураспад протона составляет очень продолжительный период времени.

Дейтерий представляет собой изотоп водорода, ядро которого состоит из 1 протона и 1 нейтрона. Дейтерий может обозначаться 2 H и буквой D, но последняя не является общепринятой. Этот изотоп так же является стабильным как и протий.

Тритий представляет собой изотоп водорода, ядро которого состоит из 1 протона и 2 нейтронов. Тритий, как и дейтерий, так же имеет два обозначения. Одно обозначение буквой T, которое так же как и у дейтерия допустимо, но не является общепринятым. Второе обозначение 3 H. Стоит отметить, что тритий является радиоактивным нестабильным изотопом. Период полураспада трития составляет 12,32 года.

Как назвал резерфорд изотоп водорода. Смотреть фото Как назвал резерфорд изотоп водорода. Смотреть картинку Как назвал резерфорд изотоп водорода. Картинка про Как назвал резерфорд изотоп водорода. Фото Как назвал резерфорд изотоп водорода

Распространенность водорода

Как получают водород

Как назвал резерфорд изотоп водорода. Смотреть фото Как назвал резерфорд изотоп водорода. Смотреть картинку Как назвал резерфорд изотоп водорода. Картинка про Как назвал резерфорд изотоп водорода. Фото Как назвал резерфорд изотоп водорода

На самом деле способов получения водорода очень и очень много. Если взять приблизительную цифру возможных способов, то, вероятно, она превысит число 300. Все эти способы можно объединить в множество групп и подгрупп. Стоит выделить самые основные. Самым простым способом добычи водорода является метод электролиза. Он заключается в пропускании через обычную воду электричества с низким напряжением. В таком варианте на аноде образуется чистый кислород, а на катоде водород.

Следующим способом получения водорода является отделение его из углеводородов посредством высоких температур. Этот способ называется как паровой реформинг и добывается из природного газа. В результате химических реакций выделяется отдельно H2 и CO2. При этой реакции температура варьируется от 1000°C до 2000°C.

Остальные способы заключаются в взаимодействии всеразличных кислот и металлов, которые осуществляются в промышленных лабораториях.

Где применяется водород

Как назвал резерфорд изотоп водорода. Смотреть фото Как назвал резерфорд изотоп водорода. Смотреть картинку Как назвал резерфорд изотоп водорода. Картинка про Как назвал резерфорд изотоп водорода. Фото Как назвал резерфорд изотоп водорода

О применении водорода говорить можно очень много, потому что он применяется почти везде и является неотъемлемой частью нашей жизни. Итак, на первом месте стоит производство аммиака из которого делается пластмасса, удобрения и многое другое. На втором месте стоит обогащение ископаемого(природного) топлива в нефтеперерабатывающей промышленности. В пищевой промышленности он используется для обогащения жиров и масел, например маргарин. Так же водород существует в виде пищевой добавки и обозначается Е949 на упаковках. Водород используется в качестве защитного компонента при сварке. Еще можно отметить, что он используется при изготовлении кислот и очищении железных руд. Так же водород используется в качестве охлаждающего вещества на электростанциях. Раньше, водород использовался как подъемный газ в дерижаблях и воздушных шарах, но потом от него отказались из-за взрывоопасности. Водородом заполняют стекляные сферы гидрокомпасов и многое другое.

Интересные факты

Как назвал резерфорд изотоп водорода. Смотреть фото Как назвал резерфорд изотоп водорода. Смотреть картинку Как назвал резерфорд изотоп водорода. Картинка про Как назвал резерфорд изотоп водорода. Фото Как назвал резерфорд изотоп водорода

Интересных фактов связанных с водородом так же немало. Водород при смеси с воздухом образует взрывоопасную смесь, которая называется гремучий газ.. Иногда, она является причиной пожаров в бытовых условиях при готовке еды. Водород в жидком сосстоянии при попадании на кожу способен вызывать сильнейшее обморожение.

Источник

Дейтерий и тритий: водород, да не тот

Кандидат химических наук Александр Семёнов, главный эксперт АО «ВНИИНМ»

В 1931—1932 годах американский физикохимик Гарольд Юри и его коллеги сумели выделить из обыкновенного, всем известного водорода необычную фракцию. Водород из этой фракции имел большие атомный вес и плотность, давал в эмиссионном спектре ранее незнакомые линии, напоминающие классические линии спектра водорода, но в то же время немного смещённые. Это означало, что в природном водороде присутствуют атомы нескольких сортов, отличные по своим свойствам. Так был открыт первый из тяжёлых изотопов водорода — дейтерий. Вскоре в чистом виде была получена «тяжёлая вода» — оксид дейтерия. Она имела на 10% бóльшую плотность, более высокие температуры плавления и кипения, чем вода обычная, сложнее разлагалась электрическим током, что вскоре легло в основу одного из первых способов её получения. Длительный, многоступенчатый электролиз воды позволял сконцентрировать дейтерий и очистить его от лёгкого изотопа водорода.

Другой тяжёлый изотоп, тритий, открыли двумя годами позже в Кембриджском университете физики Эрнест Резерфорд, Марк Олифант и физикохимик Пауль Хартек при бомбардировке ядрами дейтерия мишеней из дейтерийсодержащих соединений. При этом исследователи впервые столкнулись с ядерным синтезом — искусственным превращением одних ядер в другие. Как оказалось, третий изотоп водорода сильно радиоактивен (период полураспада 12,32 года) и поэтому не может накапливаться в природе в сколько-нибудь значимых количествах.

За открытие дейтерия Г. Юри в 1934 году был награждён Нобелевской премией по химии.

Сколько же тяжёлых изотопов водорода в природе? Дейтерия в природе не так уж и мало. Его концентрация относительно протия составляет около 0,016% ат., но, учитывая широкую распространённость самого водорода, запасы дейтерия можно считать неисчерпаемыми. Наибольшие его количества находятся в Мировом океане; концентрация дейтерия в океанической воде также заметно выше, чем в водах рек, вследствие фракционирования изотопов воды в атмосферном водяном цикле (см. «Наука и жизнь» № 5, 2011 г., статья «Изотопная «дактилоскопия» для Шерлока Холмса»). Дейтерия в водах Мирового океана содержится даже больше, чем таких химических элементов, как фтор и йод. Природные вариации соотношения изотопов дейтерия и протия изменяются в диапазоне от 5500 до 11 000 атомов лёгкого водорода на один атом тяжёлого — это своеобразный рекорд среди природных вариаций всех стабильных изотопов. Наименьшие концентрации дейтерия наблюдаются в ледниках Антарктики, а наибольшие — в закрытых водоёмах пустыни Сахара.

Трития в природе в десятки и сотни триллионов раз меньше, чем дейтерия. Из-за радиоактивного распада тритий практически отсутствует в объектах, изолированных от атмосферы, например в углеводородах нефти и природного газа. Естественная наработка трития на Земле постоянно происходит при воздействии космических лучей на ядра азота и кислорода в верхних слоях атмосферы, поэтому наиболее богаты природным тритием осадки: дождь и снег. Такая естественная наработка трития находится в равновесии с его распадом и составляет не более 7 кг на весь земной шар.

Как разделить изотопы водорода? Известный учёный и публицист академик И. В. Петрянов-Соколов в конце 1960-х годов, проведя несложные математические выкладки, показал, насколько утопичен миф о «накоплении тяжёлой воды» в чайнике при длительном кипячении. Чтобы получить хотя бы литр воды с обогащением по дейтерию всего в 10 раз больше природного, пришлось бы испарить такое её количество, масса которого во много раз превышает массу всей Солнечной системы. Причина — близость физико-химических свойств обычной и дейтериевой воды, малая величина коэффициента разделения этих изотопов при дистилляции. Эффективность разделения может быть значительно повышена, если использовать многоступенчатые противоточные процессы. Наиболее освоены и промышленно реализованы такие методы получения дейтерия, как ректификация жидкого водорода, двухтемпературный сероводородный метод, и метод, основанный на химическом обмене в системе «вода—водород». При получении концентрированного трития приходится считаться с его радиоактивностью. В этом случае могут быть применены лишь те методы, в которых водород присутствует в молекулярном виде, так как и вода и сероводород, содержащие тритий, сильно разлагаются вследствие авторадиолиза. При получении дейтерия в качестве исходного сырья используют природную воду. Тритий может быть получен только в реакторах, при облучении нейтронами одного из изотопов лития.

Приятно отметить, что наше предприятие, АО «ВНИИНМ» им. академика А. А. Бочвара, которое ранее называлось НИИ-9, стоит у истоков создания всех отечественных тритиевых технологий. И реакторная наработка трития, и его очистка от сопутствующих примесей, и проблемы безопасности обращения с ним — все эти вопросы были в своё время успешно решены.

С самого начала Атомного проекта СССР проблема получения трития была по значимости на втором месте после изготовления ядерного заряда. Тритий предстояло нарабатывать реакторным путём из лёгкого изотопа лития — 6Li. Решение этой задачи было поручено коллективу НИИ-9, состоявшему из специалистов разных направлений. С их помощью в Советском Союзе создали тритиевое производство и ныне действующее на ФГУП «ПО «Маяк» (г. Озёрск).

Процессы разделения изотопов водорода в нашей стране большей частью разработаны в МХТИ (ныне — РХТУ им. Д. И. Менделеева). Там же в 1934 году А. И. Бродский получил первую советскую тяжёлую воду на специально разработанной лабораторной установке. Ежегодно кафедра технологии изотопов РХТУ даёт образование десяткам специалистов в этой области.

Наибольшее количество дейтерия в нашей стране, по-видимому, наработано методом низкотемпературной ректификации*, хотя на первом этапе для этого активно использовали очень энергозатратный способ получения тяжёлой воды электролизом. Производства дейтерия были распределены по всей стране, при этом ориентировались на наличие свободной электроэнергии и на возможность использования отходящего водорода, в частности на азотно-туковых заводах**. Одно из наиболее крупных производств дейтерия существовало в городе Чирчик; тяжёлую воду производили также в Днепродзержинске, Сталиногорске, Ленинграде, Норильске, Каменке, Березниках, Горловке и во многих других городах СССР. Меньшее распространение у нас получил двухтемпературный сероводородный метод производства тяжёлой воды, реализованный в городе Алексине, в то время как в мировом масштабе это один из основных методов её получения.

В нашей стране тяжёлую воду и дейтерий в настоящее время производит единственное предприятие — ПИЯФ им. Б. П. Константинова в Гатчине. В качестве исходного сырья используют запасы, накопленные в СССР. Из природного сырья дейтерий у нас в стране сейчас не выделяют.

Говоря об отечественных тритиевых технологиях, нельзя не упомянуть РФЯЦ-ВНИИЭФ (г. Саров), специалисты которого многие годы занимаются этим вопросом как в рамках оборонных задач, так и для нужд фундаментальной науки. В частности, они разработали тритиевую криомишень для получения сверхтяжёлых изотопов лёгких элементов, используемую в ОИЯИ (г. Дубна) на установке АКУЛИНА***, позволившую получить пятый изотоп водорода и до сих пор востребованную в фундаментальных исследованиях.

Где же применяют тритий и дейтерий? Так уж получилось, что открытые человеком колоссальные источники энергии деления и слияния ядер изначально предполагалось использовать для разрушения, и лишь потом было освоено их мирное использование. Кроме того, есть немало сфер применения этих изотопов, вообще не связанных с реакцией термоядерного синтеза.

Один из основных отечественных потребителей трития и производителей тритиевой продукции — ФГУП «ВНИИА им. Н. Л. Духова». На этом предприятии разрабатывают и производят нейтронные генераторы — ускорительные устройства, в которых ядра дейтерия, ударяясь в мишень, вступают в ядерную реакцию с содержащимся в ней тритием. При этом выделяющиеся нейтроны имеют постоянную энергию 14,1 МэВ, а само устройство очень удобно в эксплуатации. При отсутствии ускоряющего напряжения нейтроны не излучаются (в отличие от радиоизотопных нейтронных источников), а радиоактивный тритий находится внутри нейтронной трубки и в таком виде практически безопасен (его мягкое бета-излучение не способно пробить даже лист бумаги).

Нейтронные генераторы используются везде, где требуются компактные автономные источники нейтронов. Очень востребованы они у геологов, которые используют их при гео-физическом исследовании скважин методом нейтронного каротажа. (Слово «каротаж» происходит от французского слова «carotte» — морковь, что объясняется сходством формы керна, извлекаемого из земли, с морковью.) Метод нейтронной активации при этом позволяет оперативно получить полную информацию о химическом составе всех горных пород по глубине скважины, просто опустив в неё нейтронный зонд с детектором. Нейтронный генератор, изготовленный во ВНИИА, есть даже на марсоходе «Curiosity» («Кьюриосити»; в переводе с английского означает «любопытство»), в составе прибора ДАН (Детектора альбедных нейтронов), созданного в ИКИ РАН. Главная задача этого прибора — поиск воды на Марсе под толщей грунта, и уже имеются первые положительные результаты. ВНИИНМ внёс свой вклад в этот международный проект, поставив для ВНИИА мишени, насыщенные тритием.

То, что тритий является мягким бета-излучателем с высокой радиоактивностью, обусловливает его использование в радиоизотопных источниках света и электроэнергии. Во многих часах и приборах со светящимися стрелками применяют люминофоры, активированные тритием. Тритиевая подсветка на оружейных прицелах существенно повышает точность стрельбы в ночное время.

Сейчас АО «ВНИИНМ» по заказу Роскосмоса и под руководством ООО «Солар-Си» принимает участие в разработке отечественного бета-вольтаического источника питания на основе трития — «тритиевой батарейки». Этот источник питания нужен в тех ответственных узлах, где требуется стабильное бесперебойное электроснабжение в течение многих лет. Его создание решит актуальный вопрос импортозамещения, поскольку аналогичных источников электропитания Россия в настоящее время не производит.

Наибольшие количества дейтерия потребляются атомной энергетикой. Содержащая его тяжёлая вода — один из наилучших замедлителей нейтронов, настолько эффективный, что позволяет «зажечь» реакцию деления ядер даже в уране с природным обогащением по изотопу U-235, тогда как все остальные типы ядерных реакторов требуют обогащённого урана. Использование тяжёлой воды в качестве замедлителя позволяет повысить и степень выгорания ядерного топлива. По этому пути пошла атомная энергетика Канады, которая производит для себя и строит по всему миру на заказ тяжеловодные реакторы CANDU.

И дейтерий и тритий активно применяют при производстве меченых соединений. В этой продукции заинтересованы в первую очередь биологи и медики, которые с помощью изотопной метки определяют механизмы биохимических реакций. У нас меченные тритием соединения традиционно производят в Институте молекулярной генетики РАН.

Самая заманчивая перспектива использования дейтерия и трития — создание управляемой термоядерной реакции. Если это удастся, человечество будет иметь в своём распоряжении неисчерпаемый источник энергии. К сожалению, эта задача оказалась чрезвычайно сложной. Более полувека в мире ведутся разработки в этой области, но всё равно мы очень далеки от создания такого термоядерного реактора, который производил бы энергии больше, чем потреблял. В настоящее время весь мир с надеждой смотрит на международный термоядерный реактор ИТЭР, создаваемый в городе Кадараш на юге Франции. С его помощью физики надеются приблизиться к созданию энергетики, использующей энергию слияния ядер трития и дейтерия, а в перспективе перейти к использованию одного дейтерия, чьи ядра могут взаимодействовать между собой.

В своё время на нашем предприятии пересказывали забавную историю, как один из вновь назначенных чиновников, проходя по территории ВНИИНМ, потребовал, чтобы ему «показали тритий», и был очень возмущён тем, что этого не сделали. Ему объясняли, что тритий — это газ, который прозрачен и потому невидим, тем не менее новый босс сурово резюмировал: «Что-то у вас здесь нечисто!». Давайте попытаемся понять, можно ли изотопы водорода «увидеть»?

Что касается трития, то, несомненно, да — можно, и без всяких дополнительных устройств. В концентрированном виде этот изотоп водорода даёт голубое свечение вследствие самоионизации. Поток бета-излучения трития способен при длительном контакте изменить цвет стекла, он вызывает потемнение эмульсии фотопластинок, на чём основан классический метод авторадиографического анализа, в котором по интенсивности потемнения фотоэмульсии определяют концентрацию радиоактивного изотопа. В последнее время приобретает популярность новый метод анализа трития, позволяющий визуализировать его распределение по поверхности образцов, — радиолюминография. Метод основан на образовании скрытого изображения в некоторых люминофорах под воздействием радиации. Это изображение считывается специальным лазерным сканером, причём интенсивность люминесценции пропорциональна активности образца. Концентрация трития с помощью радиолюминографии может быть представлена довольно наглядно и красочно. Радиоактивность трития даёт возможность определять даже ничтожные его количества методом жидкостной сцинтилляции, в котором определяют интенсивность свечения некоторых жидкостей, пропорциональную содержанию в них радиоактивного изотопа, и газовыми ионизационными методами, использующими свойство газовых смесей менять свои вольт-амперные характеристики при воздействии на них ионизирующего излучения. Кроме того, и дейтерий и тритий, так же как самый лёгкий из изотопов водорода протий, можно без труда «увидеть», используя современные методы атомно-эмиссионной, ИК- и масс-спектрометрии.

Не стоит забывать и об опасности, которую несут тяжёлые изотопы водорода. Самая грозная и зловещая из них скрыта в термоядерном оружии, произведённом за десятилетия «холодной войны». В своё время в прессе звучали сообщения, что мощности накопленного вооружения достаточно, чтобы неоднократно уничтожить всё живое на нашей планете. Даже малая его часть в случае использования способна вызвать глобальную экологическую катастрофу, известную под названием «ядерная зима». Несомненно, важнейшая задача всего человечества — не допустить развития такого сценария в мировой истории.

Но даже тот тритий, который не используется в вооружении, представляет для человека существенную опасность, так как является высокотоксичным радиоактивным изотопом. Риск облучения персонала, контактирующего с тритием, очень высок в связи с тем, что этот изотоп не удерживается современными фильтрующими системами защиты органов дыхания и способен проникать через кожу. При этом в форме тритированной воды тритий в 10 000 раз токсичнее, чем в виде молекулярного водорода, так как пары тритированной воды уже при комнатной температуре практически мгновенно обменивают изотопы водорода, моментально попадая за счёт этого в организм человека. Значительная часть трития при переработке радиоактивных отходов сбрасывается в атмосферу или попадает в Мировой океан. И обращение с отходами, содержащими тритий (особенно с низкоактивными, которых очень много), до сих пор представляет собой серьёзную проблему, ожидающую своего решения.

Кто бы мог предугадать 100 лет назад, что самый первый и самый простой из химических элементов — водород преподнесёт нам столько сюрпризов, столько радости и страхов, надежд и разочарований? Сегодня хочется верить, что все знания, полученные человечеством, будут направлены только на созидание, а не на разрушение, а изотопы водорода со своими удивительными свой-ствами помогут нам ещё не раз заглянуть в сокровенные тайники Природы и сделать немало интересных и полезных открытий.

Автор выражает благодарность Г. М. Тер-Акопьяну (ОИЯИ), А. А. Юхимчуку (РФЯЦ-ВНИИЭФ), Л. А. Ривкису, М. И. Белякову, А. Н. Букину, А. С. Аникину, Н. Е. Забировой, А. В. Лизунову и всему тритиевому отделу АО «ВНИИНМ» им. академика А. А. Бочвара, а также специалистам кафедры технологии изотопов РХТУ им. Д. И. Менделеева, особенно М. Б. Розенкевичу и Ю. С. Паку, которые оказали помощь при подготовке материала.

Не только тяжёлые изотопы водорода имеют собственные красивые имена. Привычный нам самый лёгкий и распространённый изотоп водорода тоже имеет специальное обозначение — протий. Все три названия этих изотопов появились ещё до открытия трития, когда Г. Юри, Д. Мерфи и Ф. Брикведде 5 июня 1933 года предложили их в письме редактору научного журнала «The Journal of Chemical Physics». Названия изотопов водорода происходят от греческих слов «protos» (первый), «deuteros» (второй) и «tritos» (третий). Интересно отметить, что название «протий» менее известно широкой общественности, чем имена тяжёлых и намного более редких его «собратьев». В последнее время в интернете появились такие названия, как «квадий», «пентий», «гексий» и «септий», отнесённые к чрезвычайно короткоживущим изотопам водорода массой от 4 до 7 и с периодами полураспада 10 –22 — 10 –23 с. Однако, по-видимому, эти названия не имеют под собой основы и являются одним из «фейков» интернета. В частности, профессор Г. М. Тер-Акопьян, который с коллективом ОИЯИ (г. Дубна) впервые получил в 2001 году ядра пятого изотопа водорода, названия «пентий» ему не давал и никогда не слышал упоминания такого термина в научных публикациях и на конференциях.

Комментарии к статье

* Ректификация — разделение жидких смесей на практически чистые компоненты, отличающиеся температурами кипения, путём многократных испарений жидкости и конденсации паров. Разделение сжиженных газовых смесей ректификацией проводят при очень низких температурах под избыточным давлением.

** На азотно-туковых заводах из природного газа получают дешёвые азотные удобрения.

*** Название АКУЛИНА происходит от английского «accurate line» — аккуратная (прецизионная) линия.

Источник

Что является общим в строении изотопов водорода 2d дейтерий и 3т тритий?

Изотопы водорода — разновидности атомов (и ядер) химического элемента водорода, имеющие разное количество нейтронов в ядре. На данный момент известны 7 обычных изотопов водорода, а также один экзотический атом водород-4.1 (мюонный гелий, 4He-μ).

Наиболее распространённым изотопом водорода в природе является протий 1H (99,984 %). Другой изотоп водорода, дейтерий 2H (или D), несмотря на малую распространенность в природе (0,0156 %) играет чрезвычайно важную роль в химических исследованиях. Например, дейтерийсодержащие соединения используются в спектроскопии ядерного магнитного резонанса (ЯМР). Особенно важны дейтерированные препараты (соединения с так называемыми дейтериевыми метками) при изучении реакций с участием атомов водорода.

Представление об изотопах

Количество нейтронов в ядре атома называется его изотопическим числом и обозначается N.

Если атом содержит одинаковое число протонов, т.е. обладает одинаковым зарядом, но разное количество нейтронов, то он будет иметь разную массу. Такие атомы называются изотопами.

N – изотопическое число

Z – зарядовое число

Некоторые изотопы имеют собственное название. Это характерно для изотопов водорода и радона. Изотоп водорода 1 Н – протий, 2 Н – дейтерий, 3 Н – тритий.

Также можно встретить изотопы кислорода 16 О, 17 О, 18 О, которые встречаются в природе.

Атом очень мал и масса его должна быть ничтожна. В 1961 году на международном съезде теоретической и прикладной химии физики и химики приняли решение, что массу атома будут измерять не в кг или г, а в единицах, получивших название атомная единица массы (а.е.м.).

История открытия изотопов водорода

В 1931—1932 годах американский физикохимик Гарольд Юри и его коллеги сумели выделить из обыкновенного, всем известного водорода необычную фракцию. Водород из этой фракции имел большие атомный вес и плотность, давал в эмиссионном спектре ранее незнакомые линии, напоминающие классические линии спектра водорода, но в то же время немного смещённые. Это означало, что в природном водороде присутствуют атомы нескольких сортов, отличные по своим свойствам. Так был открыт первый из тяжёлых изотопов водорода — дейтерий. Вскоре в чистом виде была получена «тяжёлая вода» — оксид дейтерия. Она имела на 10% бóльшую плотность, более высокие температуры плавления и кипения, чем вода обычная, сложнее разлагалась электрическим током, что вскоре легло в основу одного из первых способов её получения. Длительный, многоступенчатый электролиз воды позволял сконцентрировать дейтерий и очистить его от лёгкого изотопа водорода.

Другой тяжёлый изотоп, тритий, открыли двумя годами позже в Кембриджском университете физики Эрнест Резерфорд, Марк Олифант и физикохимик Пауль Хартек при бомбардировке ядрами дейтерия мишеней из дейтерийсодержащих соединений. При этом исследователи впервые столкнулись с ядерным синтезом — искусственным превращением одних ядер в другие. Как оказалось, третий изотоп водорода сильно радиоактивен (период полураспада 12,32 года) и поэтому не может накапливаться в природе в сколько-нибудь значимых количествах.

За открытие дейтерия Г. Юри в 1934 году был награждён Нобелевской премией по химии.

Свойства изотопов водорода

Известно несколько изотопов водорода: дейтерий ( 2 H) с одним протоном и одним нейтроном в ядре, тритий ( 3 H) с одним протоном и двумя нейтронами в ядре и очень неустойчивые тяжелые изотопы 4 H, 5 H, 6 H и 7 H. Ядра протия и дейтерия стабильны, а ядра трития подвергаются бета-распаду:

Предполагают, что эта реакция является главным источником изотопа гелия-3 в атмосфере.

Время жизни атомов остальных изотопов составляет ничтожные доли секунды.

Таблица изотопов водорода:

Содержание изотопов водорода в природе

Массовая доля (в %) в природной смеси:

1 H – 99,9849 2 H – 0,0139 3 H – 0,0012

Нормальный изотопный состав природных соединений водорода соответствует отношению D : H=1 : 6800

3·10-18 % (мольные доли). Очевидно, он образуется в результате ядерных реакций, вызванных действием космических лучей.

Получение изотопов водорода: дейтерий и тритий

Атом водорода – самый простой из всех атомов. Его ядро состоит из единственного протона. Этот (самый распространенный) изотоп водорода называют также протием, чтобы отличить от дейтерия – другого изотопа водорода, в ядре которого 1 протон и 1 нейтрон. Дейтерий находится в природе в очень небольшом количестве. Тем не менее, его научились выделять для нужд ядерной энергетики. Дейтерий – один из немногих изотопов в химии, имеющий свой собственный символ D. Наиболее известным химическим соединением, в которое входит дейтерий, является “тяжелая вода” D2O.

В ядерных реакциях образуется еще один изотоп водорода – тритий, в ядре которого 1 протон и 2 нейтрона. Тритий (химический символ T) радиоактивен и в природе не встречается.

Таким образом, известны 3 изотопа водорода: 11H (или просто H), 21H (или D), 31H (или T).

Дейтерий

В настоящее время дейтерий получают ректификацией жидкого водорода и пот так называемому двухтемпературному сероводородному методу, в основе которого лежит реакция изотопного обмена:

Константа равновесия которой при 30 и 120 °C равна соответственно 2,31 и 1,86.

Тритий

Тритий синтезируют, действуя на 6 Li3 нейтронами, получаемыми в ядерном реакторе:

Для водорода, как ни для какого другого элемента, относительное различие изотопных масс достигает значительной величины. Поэтому, несмотря на одинаковую электронную структуру, все изотопы заметно различаются не только физическими, но и химическими свойствами. Вследствие резкого преобладания протия влияние тяжелых изотопов сказывается незначительно и может быть зафиксировано лишь в очень точных экспериментах. Поэтому можно считать, что свойства природного водорода соответствуют свойствам чистого протия.

Небольшие различия свойств, называемые изотопным эффектом, обусловлены различием масс изотопных атомов, которое в первую очередь сказывается на частоте колебаний атомов в молекулах и твердых телах. Так, колебательная энергия молекул T2 и D2 меньше, чем H2. А это, в свою очередь, сказывается на термодинамических свойствах: теплоемкости, температуре плавления и кипения, энтальпии плавления и испарения, давлении насыщенного пара и т.д. Так, D2 по сравнению с обычным водородом обладает меньшей теплоемкостью, теплопроводностью и скоростью диффузии. Таким образом, для изотопных соединений характерна термодинамическая неравноценность, а, следовательно, неравноценность активных комплексов при химических реакциях, в результате чего имеет место различие в скоростях протекания реакций, т.е. наблюдается кинетический изотопный эффект. Он выражается отношением констант скоростей химических реакций для различных изотопных соединений. Например, отношение констант скоростей синтеза HBr и DBr равно 5. Такие значительные отличия физических и химических свойств изотопов одного и того же элемента уникальны и не имеют аналогов в периодической системе. Все это в какой-то мере оправдывает применение для каждого изотопа водорода собственного названия (особенно для протия и дейтерия).

Eдис(H2) = 436 кДж/мольdH-H = 0,07414 нм
Eдис(D2) = 439,56 кДж/мольdD-D = 0,07417 нм
пл(D2O) = 3,82 °Cкип(D2O) = 101,42 °Cρ = 1,1050 г/см 3 (20 °C)

Заметно с H2O различаются также энтальпия растворения солей, константы диссоциации кислот и другие характеристики растворов. Реакции в D2O идут медленнее, поэтому она является биологическим ядом.

Читайте также:

Где хранить перекись водорода в домашних условиях?

Почему перекись водорода пенится?

Зеленый водород – что это такое простыми словами

Что дает перекись водорода растениям?

Чем отличается перекись водорода от хлоргексидина?

Влияние шума на организм человека

Влияние табачного дыма на органы дыхания

Влияние физических упражнений на организм человека

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *