Как на слух настроить фазоинвертор
Простая методика настройки фазоинвертора
«Колонкостроительством» я начал заниматься в начале 80-х. И если вначале это был просто «динамик в ящике», то потом, естественно началось изучение влияния параметров ящика (и фазоинвертора) на звучание динамика.
Есть много «сабвуферостроителей», но для подавляющего большинства это просто «динамик в ящике», и чем больше, тем лучше. Да, в какой-то степени, для закрытого ящика это правильно. Но для фазоинвертора…
Фазоинвертор требует тщательной настройки. А что мы видим на практике? В качестве фазоинвертора люди ставят канализационные трубы произвольной длины, делают «щелевые фазоинверторы» по образу: «по таким размерам Вася делал», ставя при этом другой динамик. Тот, кто представляет это – ограничивается изготовлением закрытого ящика (и правильно делает!).
Конечно, есть замечательные программы моделирования, например, JBL SpeakerShop. Но все они требуют введения кучи исходных параметров. И даже зная их, расхождение с практикой получается, как правило – огромное (динамик оказался немного другой, ящик чуть отличается по размеру, наполнитель не знаем какой и сколько, труба фазоинвертора чуть другая, не знаем акустического сопротивления и т.п.)
Существует простая методика для настройки фазоинвертора, при которой не требуется знать точные исходные данные динамиков, ящиков, а также не требуются сложные измерительные приборы или математические расчёты. Всё уже было давно продумано и проверено на практике!
Хочу рассказать о простой методике настройки фазоинвертора, которая даёт погрешность не более 5%. Методике, существующей более 30-ти лет. Я ей пользовался еще, будучи школьником.
Чем ящик с фазоинвертором отличается от закрытого ящика?
Любой динамик, как механическая система, имеет собственную резонансную частоту. Выше этой частоты динамик звучит «довольно гладко», а ниже – уровень, создаваемого им звукового давления, падает. Падает со скоростью 12 дБ на октаву (т.е. в 4 раза на двукратное снижение частоты). За «нижнюю границу воспроизводимых частот» принято считать частоту, на которой уровень падает на 6 дБ (т.е. в 2 раза).
АЧХ динамика в открытом пространстве
Установив динамик в ящик, его резонансная частота несколько повысится, за счёт того, что к упругости подвеса диффузора добавится упругость сжимаемого в ящике воздуха. Подъём резонансной частоты неизбежно «потянет за собой» вверх и нижнюю границу воспроизводимых частот. Чем меньше объём воздуха в ящике, тем выше его упругость, и, следовательно, выше резонансная частота. Отсюда и желание «сделать ящик побо-о-о-ольше».
Жёлтая линия – АЧХ динамика в закрытом ящике
Сделать ящик «побольше» в некоторой степени можно не увеличивая его физические размеры. Для этого ящик заполняют поглощающим материалом. Не будем вдаваться в физику этого процесса, но по мере увеличения количества наполнителя, резонансная частота динамика в ящике понижается (увеличивается «эквивалентный объём» ящика). Если наполнителя слишком много, то резонансная частота начинает повышаться снова.
Опустим влияние размеров ящика на другие параметры, такие как добротность. Оставим это опытным «колонкостроителям». В большинстве практических случаев, из-за ограниченного пространства, объём ящика получается довольно близкий к оптимальному (мы же не строим колонки размером со шкаф). И смысл статьи, не загружать вас сложными формулами и расчётами.
Отвлеклись. С закрытым ящиком всё понятно, а что даёт нам фазоинвертор? Фазоинвертор – это «труба» (не обязательно круглая, может быть и прямоугольного сечения и узкая щель) определённой длины, которая совместно с объёмом воздуха в ящике имеет собственный резонанс. На этом «втором резонансе» поднимается звуковая отдача колонки. Частоту резонанса выбирают несколько ниже частоты резонанса динамика в ящике, т.е. в области, где у динамика начинается спад звукового давления. Следовательно, там, где у динамика наблюдается спад, появляется подъём, который в какой-то степени этот спад компенсирует, расширяя нижнюю граничную частоту воспроизводимых частот.
Красная линия – АЧХ динамика в закрытом ящике с фазоинвертором
Стоит отметить, что ниже частоты резонанса фазоинвертора спад звукового давления будет круче, чем у закрытого ящика и составит 24 дБ на октаву.
Таким образом, фазоинвертор позволяет расширить диапазон воспроизводимых частот в сторону нижних частот. Так как же выбрать частоту резонанса фазоинвертора?
Если частота резонанса фазоинвертора будет выше оптимальной, т.е. она будет находиться близко к резонансной частоте динамика в ящике, то мы получим «перекомпенсацию» в виде выпирающего горба на частотной характеристике. Звучание будет бочкообразным. Если частоту выбрать слишком низкую, то подъём уровня не будет ощущаться, т.к. на низких частотах отдача динамика падает слишком сильно (недокомпенсировали).
Голубые линии – не оптимальная настройка фазоинвертора
Это очень тонкий момент – или фазоинвертор даст эффект, или не даст никакого, или, наоборот, испортит звук! Частоту фазоинвертора нужно выбирать очень точно! Но где взять эту точность в гаражно-домашних условиях?
На самом деле, коэффициент пропорциональности между частотой резонанса динамика в ящике и частотой резонанса фазоинвертора, в подавляющем большинстве реальных конструкций составляет 0,61 – 0,65, и если принять его равным 0,63, то ошибка составит не более 5%.
Кому интересно почитать теорию рекомендую:
1. Виноградова Э.Л. «Конструирование громкоговорителей со сглаженными частотными характеристиками», Москва, изд. Энергия, 1978
2. «Ещё о расчёте и изготовлении громкоговорителя», ж. Радио, 1984, №10
3. «Настройка фазоинверторов», ж. Радио, 1986, №8
Теперь перенесём теорию на практику – так нам ближе.
Как измерить резонансную частоту динамика в ящике? Как известно, на резонансной частоте, «модуль полного электрического сопротивления» (Impedance) звуковой катушки возрастает. Грубо говоря – сопротивление растёт. Если для постоянного тока оно составляет, например, 4 Ома, то на резонансной частоте оно вырастет Ом до 20 — 60. Как это измерить?
Для этого, последовательно с динамиком нужно включить резистор номиналом на порядок выше собственного сопротивления динамика. Нам подойдёт резистор номиналом 100 – 1000 Ом. Измеряя напряжение на этом резисторе, мы можем оценивать «модуль полного электрического сопротивления» звуковой катушки динамика. На частотах, где сопротивление динамика высокое – напряжение на резисторе будет минимальным, и наоборот. Так, а чем измерить?
Измерение импеданса динамика
Абсолютные значения нам не важны, нам нужно лишь найти максимум сопротивления (минимум напряжения на резисторе), частоты довольно низкие, поэтому пользоваться можно обычным тестером (мультиметром) в режиме измерения переменного напряжения. А откуда взять источник звуковых частот?
Конечно, в качестве источника лучше использовать генератор звуковых частот… Но оставим это профессионалам. Нам же «никто не запрещает» создать компакт-диск с записанным рядом звуковых частот, созданный в какой-либо компьютерной программе, например, CoolEdit или Adobe Audition. Даже я, имея измерительные приборы дома, создал CD на 99 треков, по несколько секунд каждый, с рядом частот от 21 до 119 Гц, с шагом 1 Гц. Очень удобно! Вставил в магнитолу, прыгаешь по трекам – меняешь частоту. Частота равна номеру трека + 20. Очень просто!
Процесс измерения резонансной частоты динамика в ящике выглядит следующим образом: «затыкаем» отверстие фазоинвертора (кусок фанеры и пластилин) включаем CD на воспроизведение, устанавливаем приемлемую громкость, и, не меняя её, «прыгаем» по трекам и находим трек, на котором напряжение на резисторе минимально. Всё – частота нам известна.
Кстати, параллельно, измеряя резонансную частоту динамика в ящике, мы можем подобрать оптимальное количество наполнителя для ящика! Постепенно добавляя количество наполнителя, смотрим изменение резонансной частоты. Находим то оптимальное количество, при котором резонансная частота минимальна.
Зная значение «резонансной частоты динамика в ящике с заполнителем» легко найти оптимальную резонансную частоту фазоинвертора. Просто умножьте её на 0,63. Например, получили резонансную частоту динамика в ящике 62 Гц – следовательно, оптимальная частота резонанса фазоинвертора будет около 39 Гц.
Теперь «открываем» отверстие фазоинвертора, и, изменяя длину трубы (тоннеля) или её сечение, настраиваем фазоинвертор на требуемую частоту. Как это сделать?
Да с помощью того же резистора, тестера и CD! Только нужно помнить, что на частоте резонанса фазоинвертора, наоборот, «модуль полного электрического сопротивления» катушки динамика падает до минимума. Поэтому, искать нам нужно не минимум напряжения на резисторе, а, наоборот максимум – первый максимум, находящийся ниже частоты резонанса динамика в ящике.
Естественно, частота настройки фазоинвертора будет отличаться от требуемой. И поверьте – очень сильно… Обычно, в сторону низких частот (недокомпенсация). Для увеличения частоты настройки фазоинвертора необходимо укорачивать тоннель, либо уменьшать площадь его поперечного сечения. Делать это нужно постепенно, по полсантиметра…
Примерно так будет выглядеть в области нижних частот модуль полного электрического сопротивления динамика в ящике с оптимально настроенным фазоинвертором:
Вот, и вся методика. Очень простая, и в то же время, дающая довольно точный результат.
Простая методика настройки фазоинвертора
«Колонкостроительством» я начал заниматься ещё в начале 80-х. Вначале это был просто «динамик в ящике», но затем, конечно, я принялся изучать влияния параметров ящика (и фазоинвертора) на звучание динамика.
Попав на этот автомобильный сайт, я увидел много «сабвуферостроителей», и был сильно поражён, что для подавляющего большинства это просто «динамик в ящике», и чем больше размер динамика и ящика, тем лучше. Да, в некоторой степени, для закрытого ящика это верно. Но никак не для фазоинвертора…
Фазоинвертор требует тщательной настройки. А что мы видим на практике? В качестве фазоинвертора люди монтируют канализационные трубы непонятной длины, делают «щелевые фазоинверторы» по образу: «по этим отличным размерам Петя делал», ставят при этом совсем другой динамик. Тот, кто не может сделать по нормальному – изготавливает закрытый ящик (и правильно делает!).
Конечно же, есть такие отличные программы для моделирования акустики, к примеру, JBL SpeakerShop. Но они потребуют от вас введения множества исходных параметров. И даже зная эти параметры, расхождение в реальности получится, просто большое (динамик окажется совсем другой, короб немного различается по размерам, наполнителя не знаем, сколько нужно, фазоинверторная труба немного другая и т.п.)
Есть простой метод для настройки фазоинвертора, при которой не потребуется знать правильные исходные данные для ваших динамиков, ящиков, а также не требуются сложные измерительные приборы или математические расчёты, а также не потребуются очень сложные измерительные приборы или же расчёты математические. Скажу проще, всё уже было давно продумано и проверено на практике!
Методика настройка фазоинвертора, даёт погрешность 5%. И существует более 30-ти лет. Я ей пользовался еще, будучи школьником.
Для начала, нужно разобраться, чем ящик с фазоинвертором отличается от закрытого ящика?
Каждый динамик, как механическая система, обладает собственной резонансной частотой. Выше этой частоты динамик звучит «довольно гладко», а вот ниже – уровень, создаваемого им звукового давления, падает. Причём падает со скоростью 12 дБ на октаву (т.е. в 4 раза на двукратное снижение частоты). За «нижнюю границу воспроизводимых частот» принято считать частоту, на которой уровень падает на 6 дБ (т.е. в 2 раза).
Установив динамик в ящик, его резонансная частота немного повысится, из-за того, что к упругости подвеса самого диффузора добавится упругость сжимаемого в ящике воздуха. Подъём резонансной частоты неминуемо «потянет за собой» вверх и нижнюю границу воспроизводимых частот. Чем меньше объём воздуха в ящике, тем выше его упругость, и, следовательно, выше резонансная частота. Отсюда и возникает желание «сделать ящик побо-о-о-ольше».
Сделать ящик «побольше» в некоторой степени можно не увеличивая его физические размеры. Для этого ящик заполняют демпфирующим материалом, например, ватой. Не будем вдаваться в физику этого процесса, но по мере увеличения количества такого наполнителя, резонансная частота динамика в ящике понижается (увеличивается «эквивалентный объём» ящика). Если же наполнителя будет слишком много, то резонансная частота начинает повышаться снова.
Опустим влияние размеров ящика на другие параметры, такие как добротность. Оставим это опытным «колонкостроителям». В большинстве практических случаев, из-за ограниченного пространства, объём ящика получается довольно близкий к оптимальному (мы же не строим колонки размером со шкаф). И смысл статьи, не загружать вас сложными формулами и расчётами.
Отвлеклись. Ну, с закрытым ящиком теперь всё ясно, а что же даёт нам фазоинвертор? Фазоинвертор – это «труба» (не обязательно круглая, может быть и прямоугольного сечения и узкая щель) причём определённой длины, которая совместно с объёмом воздуха в ящике обладает собственным резонансом. На этом «втором резонансе» поднимается звуковая отдача колонки. Необходимо выбрать частоту резонанса немного ниже частоты резонанса динамика в ящике, т.е. в той области, где у динамика начинается спад звукового давления. Таким образом, там, где у динамика начинается спад, возникает подъём, который в какой-то степени этот спад компенсирует, расширяя нижнюю граничную частоту воспроизводимых частот.
Кстати, ниже частоты резонанса фазоинвертора спад звукового давления будет круче, чем у закрытого ящика и составит 24 дБ на октаву.
Следовательно, фазоинвертор позволяет расширить диапазон воспроизводимых частот в сторону нижних частот. Так как же выбрать частоту резонанса фазоинвертора?
Если частота резонанса фазоинвертора будет выше оптимальной, т.е. она будет находиться близко к резонансной частоте динамика в ящике, то мы получим «перекомпенсацию» в виде выпячивающегося горба на частотной характеристике. Звучание станет бочкообразным. Если частоту выбрать чересчур низкую, то подъём уровня не будет чувствоваться, т.к. на низких частотах отдача динамика падает слишком сильно (недокомпенсировали).
Это очень тонкий момент – или фазоинвертор даст эффект, или не даст ничего, или, наоборот, испортит звучание! Частоту фазоинвертора необходимо выбирать очень точно! Но где взять эту точность в гаражно-домашней ситуации?
На самом деле, коэффициент соразмерности между частотой резонанса динамика в ящике и частотой резонанса фазоинвертора, в подавляющем большинстве реальных конструкций составляет 0,61 – 0,65, и если принять его равным 0,63, то погрешность составит не больше 5%.
Кому интересно почитать теорию рекомендую:
1. Виноградова Э.Л. «Конструирование громкоговорителей со сглаженными частотными характеристиками», Москва, изд. Энергия, 1978
2. «Ещё о расчёте и изготовлении громкоговорителя», ж. Радио, 1984, №10
3. «Настройка фазоинверторов», ж. Радио, 1986, №8
Теперь перенесём теорию на практику – так нам ближе.
Как же измерить резонансную частоту динамика в ящике? Как известно, на резонансной частоте, «модуль полного электрического сопротивления» (Impedance) звуковой катушки возрастает. Проще говоря – сопротивление возрастает. Если для постоянного тока оно составляет, к примеру, 4 Ома, то на резонансной частоте оно вырастет до 20 — 60 Ом. Как это измерить?
Для этого, последовательно с динамиком нужно включить резистор номиналом на порядок выше собственного сопротивления динамика. Нам подойдёт резистор номиналом 100 – 1000 Ом. Кстати, измеряя напряжение на этом резисторе, мы можем оценивать «модуль полного электрического сопротивления» звуковой катушки динамика. На частотах, где сопротивление динамика будет высокое – напряжение на резисторе будет наименьшим, и наоборот. Так, а чем измерить?
Абсолютные значения нам не важны, нам нужно лишь найти максимум сопротивления (минимум напряжения на резисторе), частоты сравнительно низкие, поэтому можно воспользоваться обычным тестером (мультиметром) в режиме измерения переменного напряжения. А где взять источник звуковых частот?
Конечно, в качестве источника лучше использовать генератор звуковых частот… Но оставим это профессионалам. Проще всего создать компакт-диск с записанными треками звуковых частот, созданный в какой-либо компьютерной программе, например, CoolEdit или Adobe Audition. Даже я, имея измерительные приборы дома, создал CD на 99 треков, по несколько секунд каждый, с рядом частот от 21 до 119 Гц, с шагом 1 Гц. Очень удобно! Переключаешь треки – меняешь частоту. Частота равна номеру трека + 20. Довольно просто!
Процесс измерения резонансной частоты динамика в ящике выглядит следующим образом: «затыкаете» отверстие фазоинвертора (куском фанеры и пластилином) включаете CD на воспроизведение, устанавливаете приемлемую громкость, и, не изменяя её, «прыгаете» по трекам и находите трек, на котором напряжение на резисторе будет минимально. Всё – теперь частота вам известна.
Кстати, параллельно, измеряя резонансную частоту динамика в ящике, вы можете подобрать оптимальное количество наполнителя для вашего ящика! Постепенно добавляя количество наполнителя, смотрите изменение резонансной частоты. Находите то оптимальное количество, при котором резонансная частота будет минимальная.
Зная значение «резонансной частоты динамика в ящике с заполнителем» легко найти оптимальную резонансную частоту фазоинвертора. Просто-напросто умножьте её на 0,63. К примеру, получили резонансную частоту динамика в ящике 62 Гц – следовательно, оптимальная частота резонанса фазоинвертора будет примерно 39 Гц.
Теперь «открываем» отверстие фазоинвертора, и, изменяя длину трубы (тоннеля) или её сечение, настраиваем фазоинвертор на требуемую частоту. Как это сделать?
Да с помощью того же резистора, тестера и CD! Только нужно не забывать, что на частоте резонанса фазоинвертора, наоборот, «модуль полного электрического сопротивления» катушки динамика падает до минимума. Поэтому, искать вам нужно не минимум напряжения на резисторе, а, наоборот максимум – первый максимум, который находится ниже частоты резонанса динамика в ящике.
Конечно, частота настройки фазоинвертора будет отличаться от требуемой. И поверьте – очень сильно… Обычно, в сторону низких частот (недокомпенсация). Для повышения частоты настройки фазоинвертора нужно укорачивать тоннель, либо увеличивать площадь его поперечного сечения (диаметр). Делать это нужно понемногу, по полсантиметра…
Примерно так будет выглядеть в области нижних частот модуль полного электрического сопротивления динамика в ящике с оптимально настроенным фазоинвертором:
Вот, и вся методика. Очень просто, и в то же время, даёт довольно правильный результат.
Простой способ настройки акустических систем с фазоинвертором
В 1981 году мы с братом решили собрать акустическую систему, да не простую, а с фазоинвертором.
Методик расчета фазоинвертора на тот момент уже было великое множество, но все они были мягко говоря запутанные, очень сложные, а местами и противоречили друг другу. И вот попалась такая методика, которая показалась простой для понимания и последующей реализации.
Как это работает?
Вставляем туннель в отверстие ФИ (он должен быть достаточной длины, с запасом) предварительно на внешний конец трубки закрепляем полоску лейкопластыря (скотча) для удобства регулировки и исключения влияния ладони рис.2 Запускаем ГРЧ и медленно начинаем вытягивать трубку из ящика. При точной настройке должна резко уменьшиться амплитуда колебаний динамика, а амплитуда колебаний воздуха в ФИ должна наоборот, резко возрасти(можно поднести горящую свечу к ФИ и наблюдать, когда наступит максимальное отклонение пламени). На этом настройку можно считать оконченной. Аккуратно снимаем заднюю стенку АС и фиксируем трубу ФИ подходящим клеем(мы использовали клей»Момент»).
Далее ставим заднюю стенку АС на место. Все готово.
В заключении хочу добавить, что к сожалению, АС настроенные по этой методике не сохранились (они ушли «с молотка»70рублей за штуку, по тем временам очень хорошие деньги). Фотографий соответственно тоже нет (я не знаю, кому могло бы придти в голову, особенно в то время, фотографировать самопальную акустику, да и «цифры» тогда не было). Поэтому, привожу рисунки, из которых все должно быть понятно.
Не претендую на авторство и какое-либо «нау-хау», но данный метод должен действительно помочь всем, кто собрался собирать или уже собрал АС с ФИ. Большой плюс в том, что не надо делать сложных математических расчетов и специальных измерительных приборов, которые и в прошлом и в настоящем имели и имеют «астрономические»цены. А последний фактор для большинства людей решающий.
[24-05-2013][+]
Стараниями наших сограждан (Meshin и Kan) найдены оригиналы в старинных журналах. Полезным окажется и описание, разъясняющее например назначение подстроечных резисторов и пр.
[17-12-2015][+] Справочник по схемотехнике для радиолюбителя, Киев, «Технiка», 1987 год, стр. 108-109
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Понимание, доработка и настройка акустического оформления типа «Фазоинвертор».
Все просто! Не нужно иметь степень по физике, не нужно высшей математики, лишь логика и здравый смысл – ведь это все, что Вам нужно, чтобы получить достойный звук. В этом разделе постараемся разложить все «по полочкам», доступно и понятно описать работу и настройку корпуса типа «Фазоинвертор». Обладая знанием – исследуйте и творите свои уникальные системы!
Фазоинвертор — тип акустического оформления, объединяющий высокое качество звучания, внушительную громкость, простоту в построении и дальнейшей настройке, так же, ФИ сравнительно мал в плане вытесняемого в багажнике пространства.
Мы рекомендуем использовать оформление такого типа всем нашим пользователям в качестве первого корпуса, так же, мы тестируем и рекомендуем начальные, наиболее универсальные в реальной работе, параметры корпуса типа ФИ. Но, как всем Вам известно, из каждого правила есть исключения. И если рекомендованные нами решения удовлетворяют большинству Ваших требований, то всегда найдутся такие, кому нужно что то свое – это и участники различных соревнований, и любители «ветра», и любители «прокачивать площадки»… Эта статья посвящается как раз таким людям, построившим стандартный корпус и желающим получить больше – больше качества, или больше давления, или глубже бас, или…или…
Для начала давайте разберемся, как работает ФИ.
Если закрытый ящик(ЗЯ) попросту устраняет волны, созданные обратной стороной диффузора, то ФИ преобразует эти волны в «полезные», за счет чего происходит существенный рост эффективности и звукового давления. Несомненным плюсом ФИ, в сравнении с ЗЯ, является значительно более высокая эффективность и громкость, минус ФИ — высокий уровень групповых задержек, выраженный в «размытости» и более низкой точности баса.
Порт передает энергию в значительно более узком диапазоне, чем фронтальная часть диффузора. Потому изменения затрагивают лишь часть общего диапазона работы сабвуфера. Впрочем, для большинства значительный выигрыш в громкости или эффективной ширине диапазона куда более важен, чем не такой значительный проигрыш в качестве, от того ФИ — это, пожалуй, самый популярный корпус сегодня.
Схематическое изображение принципиальной конструкции корпуса ФИ изображено на рисунке ниже.
ФИ имеет 2 составляющие — объем(как передаточная среда) и порт(как дополнительный излучатель). Принцип работы оформления типа «фазоинвертор» — корпус инвертирует по фазе энергию обратной стороны диффузора и при помощи порта передает ее в среду, тем самым усиливая акустическую отдачу. Проще говоря, корпус делает из «отрицательных» волн «положительные», эти «положительные» волны и усиливают итоговую отдачу.
В случае с ФИ, мы настоятельно рекомендуем использование фильтра инфранизких частот.
Раздел 2. Углубляемся.
С принципом работы разобрались, теперь перейдем к практике.
Мы уже много лет проводим тестирование корпусов типа ФИ и за годы работы выявили наиболее востребованные параметры корпуса, которые удовлетворят большинство наших пользователей. Но если есть желание получить действительно что то особенное от баса — придется поработать и настроить ФИ индивидуально.
При правильном подключении, диффузор движется сначала вверх, создавая разряжение в корпусе, за тем вниз, создавая сжатие. И это нормально, но в частных случаях лучше работает в обратном порядке. Потому, первое что мы попробуем изменить – заставим диффузор перемещаться сначала вниз, затем вверх. Для этого достаточно лишь поменять полярность подключения динамика – «перепутаем» плюс с минусом, теперь диффузор сперва переместится вниз и это серьезно изменит звучание. Не путайте акустические клеммы с питанием, подключив питающие провода к усилителю не верно, Вы гарантированно его сожжете.
Размяли динамик, отслушали наш стандартный корпус, поигрались с настройками магнитолы и частотами срезов, покрутили эквалайзеры и прочие «улучшайзеры»… что то все равно не устраивает? Так перейдем к существу вопроса и изменим корпус так, чтобы устраивало все!
Настройка. Давайте сразу договоримся, во многих источниках под «настройкой» ФИ принято понимать некую единственную частоту. Мы якобы можем включить какую нибудь программу, в которую нужно внести какие то параметры и которая сразу же нам скажет и нарисует нужный ящик. Все это в корне не верно. Настройка — это осознанный и практический процесс, итогом которого является нужный результат, не зависимо от того, будет это качество звука или какое то сверх-естественное давление или особенно широкий диапазон.
Объем служит для того, чтобы изменить полярность обратной волны с «-» на «+», порт же является своего рода передатчиком энергии. Проще говоря, объем нужен тем больше, чем ниже и глубже нужен бас, порт же нужен строго определенный, тк от порта зависит то, на сколько и какая именно частота будет усилена. Еще проще говоря, объем устанавливает рамки рабочего диапазона, порт усиливает нужную часть диапазона или расширяет его вверх или вниз.
Далее рассмотрим то, как на практике происходит процесс настройки корпуса. И для начала определим основные параметры, которые мы сможем измерить, ощутить, услышать и изменить. Не будем углубляться в физику, оно и не нужно, будем размышлять проще…
Громкость – все знают что это такое, измеряется в Децибеллах (Дб). Громкость бывает пиковая (большинство соревнований SPL), измеряется максимальный результат на одной частоте, и усредненная (формат LoudGames) – измеряется ряд частот, среднее значение принимается за конечный результат. Разницу в 3Дб мы уже можем услышать, разница в 10Дб очень хорошо ощутима на слух любому.
Эффективность – этот параметр описывает то, сколько фактической громкости мы получаем с одинаковой подводимой мощности. Пример: имея 500Вт, менее эффективный корпус даст 110Дб в среднем, более эффективный – 120Дб. Нашей задачей является получить максимум эффективности на всех воспроизводимых частотах.
Диапазон воспроизводимых частот – применительно к сабвуферу это диапазон частот от 20 до 100Гц. В идеале сабвуфер должен воспроизводить все эти частоты и с одинаковой громкостью, но в реальности этого конечно нет, сабвуфер отрабатывает часть диапазона и имеет спад громкости ближе к граничным частотам своих возможностей. Наша задача – заставить сабвуфер фактически воспроизводить частоты от 20 до 100Гц, но современные автомобильные мидбасовые динамики способны работать в диапазоне уже от 70-80Гц, а многие и от 50-60Гц, что существенно облегчает задачу.
Групповое время задержек(ГВЗ) – измеряется в миллисекундах, и чем оно выше, тем менее «содержательным» наш бас будет. На практике большое ГВЗ выражается в явном «запаздывании» баса, в отсутствии множества деталей, в «обмякшем», не эмоциональном и «гудящем» басе. Почему «групповое время» — если задержка одинакова на каждой воспроизводимой частоте во всем слышимом диапазоне от 20 до 20000Гц, то бас будет идеален и точен не зависимо от того, на сколько велика эта задержка. Более того, наличие задержки естественно, и чем ниже частота, тем выше задержка. Но в реальности разница между временем задержки на разных частотах гораздо выше идеала и куда менее постоянно, и ввиду этой непостоянной разницы звук превращается в кашу – одна частота играет раньше, другая позже. Наша задача – снизить ГВЗ до естественного уровня.
Максимум эффективности в полном диапазоне воспроизводимых частот при минимуме ГВЗ – наш рецепт идеального корпуса. В реальности же, как обычно, все не так просто, выигрывая в одном, жертвуем чем то другим…
Имея корпус типа «Фазоинвертор», мы оперируем тремя взаимосвязанными переменными – объем, площадь порта и длина порта. Изменяя их, мы имеем возможность добиваться нужного результата по каждому из вышеперечисленных параметров. Разберемся, за что отвечает каждая из этих переменных и как изменения повлияют на параметры звучания, а так же, как повлияет изменение на здоровье нашего динамика и надежность системы в целом.
Объем. Увеличивая объем, мы увеличиваем эффективность, но увеличиваем и ГВЗ, перемещаем нижнюю границу диапазона вниз, но так же, вниз перемещаем и верхнюю границу. И наоборот.
Объемом мы задаем границы диапазона воспроизводимых частот. Все знают о том, что с понижением частоты растет длина волны, а это значит, что чем больше объем, тем больше будет время задержки тыловой волны и тем более эффективным будет преобразование тыловой волны с «-» на «+» на нижних частотах, но тем менее эффективным будет преобразование на верхних частотах.
С увеличением объема, увеличивается уровень и ГВЗ внизу и вверху, но если внизу диапазона увеличение ГВЗ воспринимается как естественное, то вверху это совсем не так. Изменения эффективности так же происходят, с увеличением объема растет эффективность внизу, но падает вверху.
Безусловно, объем оказывает влияние и на ГВЗ, и на эффективность, но это влияние не велико и находится вблизи естественных пределов. Главная задача объема — получение нужного эффективного диапазона воспроизводимых частот.
Динамик и объем связаны между собой. Чем больше используемый объем, тем эффективнее динамик должен быть. Простой пример: 8″ динамик запускаем в объеме 150 литров, звука практически не будет, но 18″ динамик в том же объеме легко даст полноценный бас. Все дело в том, что с увеличением линейного хода, или с увеличением размера, или с увеличением эффективности, или с увеличением сразу всех трех этих характеристик, динамик способен эффективно воздействовать на бОльшую массу воздуха.
В результате наших собственных тестов мы уже определили для вас наиболее эффективный объем для каждого нашего сабвуфера, иными словами, мы определили диапазон, в котором сабвуфер будет работать так, чтобы было возможно получить наиболее качественный звук благодаря отсутствию «провала» между мидбасом и сабвуфером, при этом мы измерили множество различных мидбасов в различных реальных условиях, определив, что нижняя воспроизводимого ими диапазона — 69-84Гц. Если Ваш мидбас реально и эффективно работает ниже обозначенных рамок, то мы рекомендуем увеличивать объем, в следствии чего сабвуфер будет работать ниже, а жертва верхней границей окажется безболезненной для системы.
С объемом разобрались, с его помощью задаем начальные границы диапазона, теперь рассмотрим порт. Порт имеет 2 параметра — площадь сечения и длина, и изменяя эти параметры, мы определяем, какой ширины диапазон будет усилен портом, в какой части рабочего диапазона будет располагаться это усиление, на сколько эффективным будет усиление, как это повлияет на ГВЗ.
Длина порта. Увеличивая длину порта, тем самым мы увеличиваем массу воздуха в порте, то есть, увеличиваем нагрузку на динамик, заставляя его «толкать» бОльшую массу воздуха. Больше воздуха — выше эффективность, но выше и уровень ГВЗ.
Длина порта на прямую влияет на динамик, повышая или, наоборот, понижая нагрузку на диффузор. В условиях оптимальной нагрузки динамик работает наиболее эффективно, создается и приличный уровень звукового давления и организуются условия для обеспечения достаточно хода диффузора, а значит, и охлаждение звуковой катушки будет достаточным и звук будет приятно глубоким и точным. Увеличивая длину порта, мы конечно увеличиваем эффективность, но увеличиваем и нагрузку на диффузор, ход будет меньше, охлаждение хуже, ГВЗ выше.
Наша рекомендация, указанная к каждому динамику — это своеобразная золотая середина между высокой эффективностью и уровнем ГВЗ, что называется «динамик нагружен оптимально».
Необходимо иметь ввиду, нагрузка на динамик создается как корпусом ФИ сзади, так и салоном автомобиля спереди. Все наши тесты мы проводим для среднего багажника автомобиля средних размеров. Предположим нагрузка на динамик спереди снижается (слушаем с открытыми дверями или автомобиль слишком большой, типа микроавтобуса), в этом случае длину порта необходимо увеличить, тем самым мы компенсируем падение фронтальной нагрузки повышением тыловой нагрузки. Обратный случай — замкнутое пространство багажника седана ввиду своего ограниченного объема существенно «сдерживает» ход сабвуфера, нагрузку в этом случае так же необходимо компенсировать, но уже путем уменьшения длины порта.
Изменяя длину порта, мы так же можем достигнуть и другой цели — расширить диапазон воспроизводимых частот или вверх или вниз, но в этом случае неизбежно выведем систему из равновесия. Увеличивая длину порта, мы, как и в случае с объемом, но в гораздо меньшей степени, увеличиваем и время задержки «тыловой» волны, тем самым повысим эффективность работы сабвуфера в нижней части диапазона. Однако, как уже было сказано выше, сделав это, мы жертвуем «здоровьем» динамика, заставляя его работать выше своих возможностей. Оптимальная же длина порта усиливает весь диапазон воспроизводимых частот, усиливая центральную его часть с плавным падением к краю.
Наша рекомендация длины порта — это золотая середина между высокой эффективностью и ГВЗ в условиях установки сабвуфера в багажнике средних размеров для обслуживания объема салона среднего автомобиля.
Итак, что мы имеем. Отталкиваясь от наших рекомендаций, увеличиваем длину порта в случае, если необходимо компенсировать нагрузку на динамик. Увеличиваем длину порта чтобы увеличить отдачу внизу рабочего диапазона, увеличить нагрузку на динамик и принести в жертву эффективность и увеличить ГВЗ. И наоборот.
Площадь порта. Изменяя площадь порта, мы сужаем или расширяем диапазон воспроизводимых частот сабвуфера, так же, изменяем как эффективность, так и ГВЗ.
Площадь, как и длина порта, разгружают или нагружают динамик, изменяя массу воздуха в порте. Чем больше площадь, тем выше ГВЗ и выше эффективность и наоборот.
Порт имеет определенную пропускную способность. Чем больше площадь порта, тем выше его пропускная способность, тем лучше порт работает на низких частотах, но тем более узким будет диапазон. Однако, слишком большая площадь порта сильно перегрузит динамик до такой степени, что его эффективность упадет до нуля. И наоборот, слишком малая площадь порта, и о прибавке громкости, свойственной ФИ, можно забыть.
Наш порт — это разумный компромисс между шириной диапазона, эффективностью и ГВЗ. В итоге, опять же отталкиваясь от наших рекомендаций, увеличиваем площадь порта в случае, если есть необходимость получить повышенную эффективность в суженном диапазоне частот, или же уменьшаем площадь порта в случае, когда нужно расширить диапазон или снизить ГВЗ, но есть возможность и жертвовать эффективностью.
Комплексные изменения. Как мы видим, и объем, и порт отвечают за одни и те же параметры, но в реальности их влияние не одинаково ни по степени, ни по силе воздействия на конечный результат. Изменяя объем, мы настраиваем диапазон воспроизводимых частот, изменяя порт, мы настраиваем сабвуфер на работу в конкретных условиях. Однако, как Вы уже поняли, существует множество вариантов изменений сразу нескольких параметров, в результате чего есть возможность настроить сабвуфер так, чтобы он работал индивидуально. Это означает, что Вы добровольно жертвуете каким то менее значимым параметром звучания, но получаете возможность выделить гораздо более значимый.
Пределы изменений. Изменение объема всегда будет оказывать менее существенное влияние на характер звучания, чем порт, но пределы изменения объема значительно более широкие. Полезные изменения объема находятся в пределах +-60% от исходного. Изменения площади и длины порта следует делать с особой осторожностью, и в пределах не более 35%. Все изменения, выходящие за эти пределы, повлекут серьезные негативные последствия, перекрывающие все видимые плюсы. Это и существенные изменения звучания в негативную сторону, равно как возможно и очень значительное повышение нагрузки на динамик.
Так же, при комплексных переменах остерегайтесь «двойного действия». К примеру, увеличили объем и увеличили длину порта — оба эти действия не просто сильно понизят диапазон воспроизводимых частот, но и крайне серьезно перегрузят динамик. Необходимо проявить максимум осторожности и внимания к внесению изменений подобного характера.
Вполне возможно, внося одно изменение, компенсировать его другим. Например, увеличивая объем, уменьшить длину порта и т.п. Такие изменения способны как привести к нужному результату, так и компенсировать нежелательные последствия.
Помните, любые изменения полезны до того момента, пока не вносят более существенный вред. Нет таких изменений, которые дают только плюсы и не имеют минусов. При изменении нами рекомендованного корпуса, перед Вами стоит конкретный вопрос – чем, в какой степени и ради чего Вы готовы жертвовать.
Программы для компьютерного моделирования. В природе существует ряд программ, способных смоделировать результат работы сабвуфера на базе некоторых параметров. Мы рекомендуем ознакомиться с такими программами, по одной единственной причине — они способствуют пониманию изложенного материала. Однако, результат моделирования ни в коем случае не должен являться для Вас руководством к действию ввиду того, что ни одна программа на сегодняшний день не учитывает и половины тех нюансов, которые в реальности влияют на работу сабвуфера. Невозможно с помощью программы построить сабвуфер с нуля, однако возможно понять, как то или иное изменение корпуса повлияет на характер звучания в целом. Иными словами, программа поможет только тогда, когда уже есть от чего отталкиваться и нужно внести какие то изменения в уже существующий и рабочий корпус.
Начальное руководство мы получили, давайте теперь рассмотрим на реальных примерах применение полученных знаний…
Пример 1. Мидбас поставили в ящик или в хорошо подготовленную дверь, теперь он работает значительно ниже и эффективнее чем раньше, а естественная величина задержки на нижней границе мидбасового диапазона возросла. Получается, что нам уже не нужен диапазон работы от 20 до 80Гц, а нужен лишь от 20 до 60Гц. Мы знаем, что DD исследует и создает корпуса так, чтобы они эффективно воспроизводили частоты «сверху вниз», то есть, DD жертвует самым низом, чтобы правильно состыковать мидбас и сабвуфер и получать «цельный» звук. Увеличиваем объем и смотрим что получилось – сабвуфер теперь работает более эффективно и глубоко, а возросшая задержка на верхней границе не оказала влияния на звук, т.к. разница между нижней задержкой мидбаса и сабвуфером не изменилась.
Пример 2. Низкокачественный мидбас поставили в штатное место… При таких условиях возникает существенный провал между сабвуфером и мидбасом, в результате ряд частот мы просто не слышим, а сабвуфер играет «отдельно от музыки». Чтобы получить естественный звук, лучше всего будет не перекладывать проблему «с больной головы на здоровую» и поработать с мидбасом. Но если это невозможно (а оно часто невозможно по целому ряду причин), существует ряд решений:
— уменьшаем объем корпуса. Жертвуя нижними частотами, мы все же получаем «цельное» звучание.
— уменьшаем площадь порта и уменьшаем длину порта. Жертвуя эффективностью, получаем более широкий диапазон воспроизводимых частот.
— уменьшаем объем и увеличиваем длину порта. Жертвуя «здоровьем» динамика, расширяем диапазон…
Пример 3. Нужен более глубокий, более «мягкий» бас…
— уменьшаем площадь порта. Жертвуя эффективностью, мы расширяем диапазон и уменьшаем разницу в громкости между частотами в центре диапазона, уменьшаем ГВЗ, получаем точный, низкий, приятный бас, но менее громкий…
— уменьшаем объем, увеличиваем длину порта, уменьшаем площадь порта, в итоге изменений уровень ГВЗ падает вместе с эффективностью, а диапазон существенно расширяется с плавным спадом за пределами…
Пример 4. Хочется «надавить» на соревнованиях…
— в этом случае уменьшаем объем, увеличиваем площадь и длину порта, получаем рост эффективности в центре диапазона и резкий спад по краям, сам же диапазон смещается вверх ближе к резонансной частоте кузова. Для музыки не подойдет, но «надавить» уже куда веселее.
Пример 5. Хочется много «инфры» c «ветерком»…
— увеличиваем объем, увеличиваем площадь порта. Сдвигаем диапазон в «нужное» место и площадью порта увеличиваем эффективность, бинго, жертвуем всем в пользу эффективности на самых низких частотах.
— увеличиваем объем, увеличиваем площадь порта, увеличиваем длину порта. Тот же самый результат, но в условиях, когда мощности недостаточно и есть некоторый «запас» в системе охлаждения.
Пример 6. Нужно получить максимально качественный бас…
— уменьшаем площадь порта. Теряем в эффективности, но получаем более широкий диапазон и уменьшаем ГВЗ.
— уменьшаем площадь порта и уменьшаем объем. Теряем в эффективности еще больше, расширяем диапазон вверх и серьезно уменьшаем ГВЗ…
Пробуем! Полученный звук нестандартен и с помощью простых манипуляций с объемом корпуса или параметрами порта уже соответствует Вашей системе! Для персонализации большинства систем и этих знаний более чем достаточно. Однако профессиональный подход подразумевает более детальные и более точные изменения.
Понимание того, за что отвечает изменение, мы уже дали, профессионалу же нужно нечто большее — это измеренные и предельно точные режимы работы, в которых возможно «выжать» максимум пользы из сабвуфера, предельно качественный звук, предельно высокий уровень громкости, предельно точный диапазон работы… Ответ на все эти вопросы один — тесты и эксперименты, о чем читайте в следующем разделе.