почему лазер нельзя наводить на зеркало

Можно ли отразить лазерный луч?

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

Человек, знающий элементарные законы оптики, от души посмеется над сюжетом, в котором супергерой отражает лазерную атаку злодея с помощью блестящей поверхности. Зеркало не способно отразить луч лазера, не рассеяв его пучок. Чтобы отразить или перенаправить луч лазера, нужно потрудиться и иметь для этого достаточно сложное оборудование.
Да и рука супергероя находится в большой опасности. Ведь при попадании мощного луча, зеркало с недостаточным качеством поверхности, или разрушится, или расплавится.

Это немалая проблема для современных специалистов в области лазерной оптики. Они сталкиваются с необходимостью отражать пучок лазера постоянно. Каких только ухищрений не предпринимали ученые до недавнего времени, их зеркала не удовлетворяли поставленным задачам. Какой бы идеальной ни была поверхность зеркала, она греется в точке соприкосновения с лучом, нагревается и деформируется. Лазерный луч не отражается полностью, большая часть его энергии утрачивается.

Традиционно, ученые искали новые теплостойкие материалы для изготовления зеркал. Одни материалы лучше, иные хуже, одни материалы дорогие, а другие требуют сложной обработки. Поиски подходящего материала не закончены и по сей день. Скорее всего, эти поиски затянутся на неопределенное время.

Оптики из института Фраунгофера пошли другим путем. Они применили известную поговорку «если гора не идет к Магомету, то Магомет идет к горе». Они изменили подход к проблеме и решили создать умное зеркало, которое само компенсирует потери энергии и «подстраивается» под каждый вил лазерного луча индивидуально. Это стало возможным за счет того, что зеркало не поглощает тепло и деформируется, а просто компенсирует тепловую деформацию. Для компенсации используется высокоточный искусственный нагрев нужных областей зеркала и пьезоэлектрический эффект.
Зеркало, изготовленное из специальной керамики и покрытое слоем меди, может менять свою поверхность автоматически. Это происходит благодаря тепловым датчикам, которые дают команду нагревательному устройству разогреть ту область зеркала, которая компенсирует деформацию от тепла лазерного луча.

Применение умных зеркал дает простор для широкого применения лазера. Это могут быть установки для разрезания крупногабаритного космического мусора на мелкие части, которые способны сгореть в атмосфере Земли. Для этого не понадобится значительных затрат энергии и работы можно проводить с большого расстояния.

Применение таких зеркал поможет преодолеть атмосферные искажения лазерного луча и передавать большие объемы информации без потерь на расстояния в тысячи километров. В этом проекте кроются отличные перспективы для развития лазерной связи.

Конечно же, супергерою в карман такое зеркало не поместится. Ему нужно найти другие способы противостоять лазерному оружию. Кто знает, может такие методы и найдутся в будущем?!

Источник

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

Обычное зеркало с алюминиевым покрытием отражает примерно 95% падающего излучения, причём его эффективность сильно зависит от длины волны.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

Из всех материалов, показанных на графике, самый высокий коэффициент отражения у алюминия, который отнюдь не является тугоплавким материалом. Если при облучении маломощным излучением зеркало будет нагреваться незначительно, то при попадании мощного излучения материал зеркального покрытия быстро придёт в негодность, что приведёт к ухудшению его отражающих свойств и дальнейшему лавинообразному нагреву и разрушению.

При длине волны менее 200 нм эффективность зеркал резко падает, т.е. от ультрафиолетового или рентгеновского излучения (лазер на свободных электронах) такая защита не будет работать вообще.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

Существуют экспериментальные искусственные материалы со 100%-ным отражением, но они работают только для определённой длины волны. Также зеркала могут покрываться специальными многослойными покрытиями, увеличивающими их отражающие способности до 99.999%. Но и этот метод работает только для одной длины волны, причём падающей под определённым углом.

Выход из контейнера сразу подвергнет зеркальную поверхность воздействию окружающей среды – атмосферы и теплового воздействия. Если зеркальная поверхность не будет покрыта защитной плёнкой, то это сразу приведёт к ухудшению её отражающих свойств, а если её покрыть защитным напылением, то оно само будет ухудшать отражающие свойства поверхности.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

В какой-то степени поможет способ «размазывания» тепловой энергии лазерного луча по корпусу путем обеспечения вращательного движения летательного аппарата (ЛА), вокруг собственной продольной оси. Но этот способ подходит лишь для боеприпасов и в ограниченной степени для беспилотных летательных аппаратов (БПЛА), в меньшей степени он будет эффективен при облучении лазером в переднюю часть корпуса.

На некоторые типах защищаемых объектов, например, на планирующих авиабомбах, крылатых ракетах (КР), или противотанковых управляемых ракетах (ПТУР), атакующих цель при пролёте сверху, такой способ также применить не удастся. Невращающимися, по большей части, являются миномётные мины. Сложно собрать данные по всем невращающимся ЛА, но уверен, что их очень много.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

В любом случае, вращение ЛА лишь незначительно снизит влияние лазерного излучения на цель, т.к. тепло, передаваемое мощным лазерным излучением корпусу будет передаваться на внутренние конструкции и далее по всем компонентам летательного аппарата.

Применение дымов и аэрозолей в качестве мер по противодействию лазерному оружию также имеет ограниченные возможности. Как уже говорилось в статьях серии, применение лазеров против наземной бронированной техники или кораблей возможно только при использовании против средств наблюдения, к защите которых мы ещё вернёмся. Прожечь корпус БМП/танка или надводного корабля лазерным лучом в обозримой перспективе нереально.

Разумеется, невозможно применить дымовую или аэрозольную защиту против ЛА. Из-за высокой скорости ЛА дым или аэрозоль всегда будут сдуваться назад встречным напором воздуха, у вертолётов их будет сдувать воздушный поток от винта.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

— на вооружении будет стоять большая номенклатура лазеров различных производителей, работающих на разных длинах волн;

— фильтр, предназначенный для поглощения или отражения определённой длины волны, при воздействии мощного излучения скорее всего выйдет из строя, что приведёт либо к попаданию лазерного излучения на чувствительные элементы, либо выходу из строя самой оптики (помутнение, искажение изображения);

— некоторые лазеры, в частности, лазер на свободных электронах, могут изменять рабочую длину волны в широком диапазоне.

Если на крупных носителях установка защитных экранов и дублирующих средств оптической и тепловизионной разведки вполне реализуема, то на высокоточном оружии, особенно компактных размеров, это сделать гораздо сложнее. Во-первых, существенно ужесточаются массогабаритные требования к защите, во-вторых, воздействие лазерного излучения высокой мощности даже при закрытой заслонке, может вызвать, перегрев компонент оптической системы из-за плотной компоновки, что приведёт к частичному или полному нарушению её работы.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

Абляционная защита (от латинского ablatio – отнятие, унос массы) основана на уносе вещества с поверхности защищаемого объекта потоком горячего газа и/или на перестройке пограничного слоя, что в совокупности значительно уменьшает теплопередачу к защищаемой поверхности. Иными словами, поступающая энергия тратится на нагрев, расплав, и испарение защищающего материала.

В настоящий момент абляционная защита активно используется в спускаемых модулях космических аппаратов (КА) и в соплах реактивных двигателей. Наибольшее применение получили обугливающиеся пластмассы на основе фенольных, кремнийорганических и других синтетических смол, содержащих в качестве наполнителей углерод (в том числе графит), двуокись кремния (кремнезем, кварц), найлон.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

Абляционная защита – одноразовая, тяжелая и объёмная, поэтому использовать её на летательных аппаратах многоразового использования (читай не всех пилотируемых, и большей части беспилотных ЛА) нет смысла. Единственное её применение – это на управляемых и неуправляемых снарядах. И здесь основной вопрос в том, какой толщины должна быть защита для лазера мощностью, например, 100 кВт, 300 кВт и т.д.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

Под вопросом находятся неуправляемые боеприпасы, поскольку неравномерное разрушение абляционной защиты от лазерного излучения может изменить внешнюю баллистику, вследствие чего боеприпас отклонится от цели. Если абляционная защита уже где-то применяется, например, в гиперзвуковых боеприпасах, то придётся наращивать её толщину.

Другой способ защиты – конструктивное покрытие или исполнение корпуса несколькими защитными слоями из тугоплавких материалов, устойчивых к внешним воздействиям.

Если проводить аналогию с космическими аппаратами, то можно рассмотреть тепловую защиту многоразового КА «Буран». На участках, где температура поверхности составляет 371 – 1260 градусов Цельсия, применялось покрытие, состоящее из аморфного кварцевого волокна 99,7 %-ной чистоты, к которому добавляется связующее – коллоидная двуокись кремния. Покрытие изготавливается в виде плиток двух типоразмеров толщиной от 5 до 64 мм.

На внешнюю поверхность плиток наносится боросиликатное стекло, содержащее специальный пигмент (белое покрытие на основе окиси кремния и блестящей окиси алюминия), для получения малого коэффициента поглощения солнечной радиации и высокого коэффициента излучения. На носовом обтекателе и носках крыла аппарата, где температуры превышают 1260 градусов, применялась абляционная защита.

Необходимо учитывать, что при длительной эксплуатации может быть нарушена защита плиток от влаги, что приведёт к утрате теплозащитой своих свойств, поэтому она не может напрямую быть использована в качестве противолазерной защиты на многоразовых ЛА.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

В настоящий момент разрабатывается перспективная абляционная теплозащита с минимальным износом поверхности, обеспечивающая защиту летательных аппаратов от температуры до 3000 градусов.

Группа учёных из Института Ройса при Университете Манчестера (Великобритания) и Центрального южного университета (Китай) разработала новый материал с улучшенными характеристиками, который без структурных изменений выдерживает температуру до 3000°C. Это керамическое покрытие Zr0.8Ti0.2C0.74B0.26, которое накладывается на матрицу углерод-углеродного композита. По своим характеристикам новое покрытие значительно превосходит самую лучшую высокотемпературную керамику.

Химическая структура термостойкой керамики сама по себе выполняет роль защитного механизма. При температуре 2000°C материалы Zr0.8Ti0.2C0.74B0.26 и SiC окисляются и превращаются в Zr0.80T0.20O2, B2O3 и SiO2, соответственно. Zr0.80Ti0.20O2 частично расплавляется и формирует относительно плотный слой, а оксиды с низкой температурой плавления SiO2 и B2O3 испаряются. При более высокой температуре 2500°C кристаллы Zr0.80Ti0.20O2 сплавляются в более крупные образования. При температуре 3000°C формируется почти абсолютно плотный внешний слой, в основном состоящий из Zr0.80Ti0.20O2, титаната циркония и SiO2.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

В мире ведутся разработки и специальных покрытий, предназначенных для защиты от лазерного излучения.

Представитель Народно-освободительной армии Китая еще в 2014 году заявлял, что американские лазеры не представляют особой опасности для китайской военной техники, обшитой специальным защитным слоем. Остаются только вопросы, от лазеров какой мощности, защищает это покрытие, и какую имеет толщину и массу.

Наибольший интерес представляет покрытие, разработанное американскими исследователями из Национального института стандартов и технологий и университета Канзаса – аэрозольный состав на основе смеси углеродных нанотрубок и специальной керамики, способный эффективно поглощать свет лазеров. Нанотрубки нового материала однородно поглощают свет и передают тепло в близлежащие области, снижая температуру в точке контакта с лучом лазера. Керамические высокотемпературные соединения обеспечивают защитному покрытию высокую механическую прочность и стойкость по отношению к разрушениям от высокой температуры.

В процессе испытаний тонкий слой материала нанесли на поверхность меди и после высыхания сфокусировали на поверхности материала луч длинноволнового инфракрасного лазера, лазера, который используется для резки металла и других твердых материалов.

Анализ собранных данных показал, что покрытие успешно поглотило 97.5 процентов энергии луча лазера и без разрушения выдержало уровень энергии в 15 кВт на квадратный сантиметр поверхности.

По данному покрытию возникает вопрос: на испытаниях защитное покрытие было нанесено на медную поверхность, которая сама по себе является одной из самых сложных материалов для обработки лазером, из-за её высокой теплопроводности, неясно как оно поведёт себя такое защитное покрытие с другими материалами. Также возникают вопросы о её максимальной температурной стойкости, стойкости к вибрационно-ударным нагрузкам, воздействию атмосферных условий и ультрафиолета (солнце). Не указано время, в течении которого проводилось облучение.

Ещё один интересный момент: если двигатели ЛА также будут покрыты веществом с высокой теплопроводностью, то от них равномерно будет нагрет весь корпус, что максимально демаскирует ЛА в тепловом спектре.

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

В любом случае, характеристики вышеуказанной аэрозольной защиты будут находиться в прямой зависимости с размерами защищаемого объекта. Чем больше защищаемый объект и площадь покрытия, тем больше энергии может быть рассеяно по площади и отдано в виде теплового излучения и охлаждения набегающим потоком воздуха. Чем меньше защищаемый объект, тем толще придётся делать защиту, т.к. малая площадь не позволит отвести достаточно тепла и будут перегреты внутренние конструктивные элементы.

Применение защиты от лазерного излучения, неважно абляционной или конструктивной теплоизолирующей, может переломить тенденцию к уменьшению размеров управляемых боеприпасов, существенно уменьшить эффективность как управляемых, так и не управляемых боеприпасов.

Все несущие поверхности и органы управления – крылья, стабилизаторы, рули, придётся делать из дорогих и сложно обрабатываемых тугоплавких материалов.

Отдельно возникает вопрос по защите радиолокационных средств обнаружения. На экспериментальном космическом аппарате «БОР-5» испытывалась радиопрозрачная теплозащита – стеклопластик с кремнеземным наполнителем, но её теплозащитные и массогабаритные характеристики мне найти не удалось.

Пока неясно, может ли в результате облучения мощным лазерным излучением обтекателя радиолокационных средств разведки, пусть и с защитой от теплового излучения, возникнуть высокотемпературное плазменное образование, препятствующее прохождению радиоволн, вследствие чего цель может быть потеряна.

Внедрение противолазерной защиты неизбежно приведёт к росту стоимости и массогабаритных характеристик управляемых и неуправляемых боеприпасов, а также пилотируемых и беспилотных летательных аппаратов.

В заключение можно упомянуть об одном из разрабатывающихся способов активного противодействия лазерной атаке. Компания Adsys Controls, расположенная в Калифорнии, разрабатывает защитную систему Helios, которая должна сбивать наведение лазера противника.

При наведении боевого лазера противника на защищаемый аппарат Helios определяет его параметры: мощность, длину волны, частоту импульсов, направление и дальность до источника. В дальнейшем Helios мешает лазерному лучу противника фокусироваться на цели, предположительно путём наведения встречного низкоэнергетического лазерного луча, который сбивает с толку систему наведения противника. Детальные характеристики системы Helios, стадия её разработки и её практическая работоспособность пока неизвестны.

Источник

Почему лазер нельзя наводить на зеркало

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

Лазеры являются устройствами, которые вырабатывают концентрированный луч света. Их используют для работы, научных исследований и учебы.

Несмотря на то, что лазерные лучи — это пучки света, от простых лампочек они сильно отличаются. Лампа накаливания дает рассеянное излучение, которое распространяется во все стороны и, следовательно, может осветить комнату.

Лазерный луч же производит излучение в узком диапазоне волн, образуя концентрированный, не толще карандаша, луч, который можно направлять на большие расстояния.

Благодаря этому свойству слабые лазеры нашли применение в виде указок и дальномеров. Но независимо от силы лазера, они несут опасность для человеческих глаз.

Длина волны света в лазерах обычно измеряется в нанометрах (нм) — это одна миллиардная часть метра. Лазеры, которые можно купить в магазинах, чаще всего или красного цвета (длина волны 630 и 670 нм), зеленого (532 нм) или синего (примерно 445 нм).

Наиболее опасные лазеры обычно излучают зеленый свет.

Если в глаз направить лазерный указатель, вы ощутите яркую вспышку. Это может отвлечь вас, привести к временной потере зрения в пораженном глазу, а иногда и вызвать так называемое остаточное изображение на сетчатке, то есть оптический обман.

Основной механизм разрушения клеток сетчатки под действием лазера – повышение температуры.

Результатом обычно становится появление слепого пятна, размер которого зависит от длительности воздействия и площади поражения.

Поэтому, чтобы не навредить себе и окружающим нужно придерживаться нескольких правил:

Но если вдруг вам скользнули по глазам лазерной указкой, то, даже если вы чувствуете себя хорошо и вам кажется, что всё нормально, стоит сходить к врачу, чтобы он проверил глазное дно, проанализировал ситуацию и при необходимости назначил лечение.

Источник

Влияние лазера на глаза

почему лазер нельзя наводить на зеркало. Смотреть фото почему лазер нельзя наводить на зеркало. Смотреть картинку почему лазер нельзя наводить на зеркало. Картинка про почему лазер нельзя наводить на зеркало. Фото почему лазер нельзя наводить на зеркало

Основная опасность, связанная с лазерным излучением, заключается в воздействии на глаз. Свет вызывает биологический ущерб как в результате температурных воздействий из-за поглощенной энергии, так и в результате фотохимических реакций.

Основной вид повреждения зависит от длины волны света и от ткани, которую подвергают воздействию. Считается, что для контроля опасностей, связанных с лазерами, повреждение происходит главным образом из-за температурных воздействий, а важнейшими органами являются глаза и кожа.

Если на вашем предприятии используется лазерное оборудование мы советуем воспользоваться нашими услугами.

Как работает глаз?

Глаз можно концептуально рассматривать как слегка сплющенный шар, который прозрачен для света, проходящего через диафрагму зрачка и который имеет эффективный поглотитель света на внутренней стороне (поверхности сетчатки), напротив диафрагмы. Прозрачная область глаза включает в себя несколько структур, которые управляют попаданием света на сетчатку.

Роговица является основной преломляющей структурой глаза. Из-за различий в показателях преломления воздуха и роговицы, более 80 процентов преломления света происходит внутри глаза. Хрусталик является динамической преломляющей средой в глазу и отвечает за фокусировку света. Сетчатка является светопоглощающей структурой глаза, содержащей нейронные рецепторы, которые инициируют зрительный процесс. Слепое пятно на поверхности сетчатки расположено в точке, где оптический нерв попадает в глаз. Центральная ямка желтого пятна — это та часть сетчатки, которая наиболее чувствительна к деталям и которая различает цвет. Эта структура находится в центральной части сетчатки.

Последствия попадания лазера в глаза

Различные структуры глаза по-разному передают, отражают и поглощают оптическую энергию. Пропускная способность среды глаза такова, что воздействие на сетчатку оказывается при длинах волн лазера от 400 нм до 1400 нм. Свет этого диапазона фокусируется на сетчатке, откуда сигналы поступают в мозг по зрительному нерву. При взгляде прямо на точечный источник света (что случается при прямом попадании в глаз пучка лазерных лучей), на сетчатке формируется фокусное пятно малой площади, с высокой плотностью энергии, что с большой вероятностью приводит к повреждению глаза. Мы подвергаем себя, в определенной степени, той же опасности, когда прямо смотрим на солнце, только в случае лазеров, она еще больше. За пределами этого диапазона поражаются структуры, отличные от сетчатки глаза.

Возможное место повреждения глаза напрямую связано с длиной волны лазерного излучения. При попадании лазерного излучения в глаз наблюдаются следующие эффекты:

Дополнительные сведения о повреждении глаза лазером:

Первое правило лазерной безопасности: никогда ни при каких обстоятельствах не смотрите лазерный луч! Если вы можете предотвратить попадание лазерного луча и его отражений в глаз, вы сможете предотвратить болезненные травмы и потерю зрения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *