Как называется цифры с запятыми

Десятичные дроби

Обыкновенную дробь (или смешанное число), у которой знаменатель является единицей с одним или более нулями (т. е. 10, 100, 1000 и т. д.):

Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми

можно записать в более простой форме: без знаменателя, разделяя целую и дробную части друг от друга запятой (при этом считают, что целая часть правильной дроби равна 0). Сначала записывается целая часть, затем ставится запятая, и после неё записывается дробная часть:

Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми

Записанные в такой форме обыкновенные дроби (или смешанные числа) называются десятичными дробями.

Чтение и запись десятичных дробей

Десятичные дроби записывают по тем же правилам, по которым записывают натуральные числа в десятичной системе счисления. Это означает, что в десятичных дробях, как и в натуральных числах, каждая цифра выражает единицы, которые в десять раз больше соседних единиц, стоящих справа.

Рассмотрим следующую запись:

Цифра 8 означает простые единицы. Цифра 3 означает единицы, в 10 раз меньшие, чем простые единицы, т. е. десятые доли. 4 означает сотые доли, 2 — тысячные и т. д.

Цифры, которые стоят справа после запятой, называются десятичными знаками.

3,1 читается так: три целых одна десятая ;

Чтобы лучше понять правила записи и чтения десятичных дробей, рассмотрим таблицу разрядов и приведённые в ней примеры записи чисел:

Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми

Обратите внимание, после запятой в записи десятичной дроби получается столько цифр, сколько нулей содержит знаменатель соответствующей ей обыкновенной дроби:

Источник

Десятичные дроби: определения, запись, примеры, действия с десятичными дробями

Данный материал мы посвятим такой важной теме, как десятичные дроби. Сначала определимся с основными определениями, приведем примеры и остановимся на правилах десятичной записи, а также на том, что из себя представляют разряды десятичных дробей. Далее выделим основные виды: конечные и бесконечные, периодические и непериодические дроби. В финальной части мы покажем, как точки, соответствующие дробным числам, расположены на оси координат.

Что такое десятичная запись дробных чисел

Так называемая десятичная запись дробных чисел может быть использована как для натуральных, так и для дробных чисел. Она выглядит как набор из двух и более цифр, между которыми есть запятая.

Десятичная запятая нужна для того, чтобы отделять целую часть от дробной. Как правило, последняя цифра десятичной дроби не бывает нулем, за исключением случаев, когда десятичная запятая стоит сразу после первого же нуля.

Определение десятичных дробей

Основываясь на указанном выше понятии десятичной записи, мы можем сформулировать следующее определение десятичных дробей:

Десятичные дроби представляют собой дробные числа в десятичной записи.

О том, как правильно представить в десятичном виде обыкновенные дроби с десятками, сотнями, тысячами в знаменателе, будет рассказано в рамках отдельного материала.

Как правильно читать десятичные дроби

Что такое разряды в десятичных дробях

Названия разрядов, расположенных до запятой, аналогичны тем, что существуют в натуральных числах. Названия тех, что расположены после, наглядно представлены в таблице:

Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми

Любую десятичную дробь можно разложить по отдельным разрядам, то есть представить в виде суммы. Это действие выполняется так же, как и для натуральных чисел.

Что такое конечные десятичные дроби

Все дроби, о которых мы говорили выше, являются конечными десятичными дробями. Это означает, что количество цифр, расположенное у них после запятой, является конечным. Выведем определение:

Конечные десятичные дроби представляют собой вид десятичных дробей, у которых после знака запятой стоит конечное число знаков.

Основные виды бесконечных десятичных дробей: периодические и непериодические дроби

Мы указывали выше, что конечные дроби называются так потому, что после запятой у них стоит конечное число цифр. Однако оно вполне может быть и бесконечным, и в этом случае сами дроби также будут называться бесконечными.

Бесконечными десятичными дробями называются такие, у которых после запятой стоит бесконечное количество цифр.

В «хвосте» такой дроби могут стоять не только случайные на первый взгляд последовательности цифр, но постоянное повторение одного и того же знака или группы знаков. Дроби с чередованием после десятичной запятой называются периодическими.

Периодическими десятичными дробями называются такие бесконечные десятичные дроби, у которых после запятой повторяется одна цифра или группа из нескольких цифр. Повторяющаяся часть называется периодом дроби.

Во избежание ошибок введем однообразие обозначений. Условимся записывать только один период (максимально короткую последовательность цифр), который стоит ближе всего к десятичной запятой, и заключать его в круглые скобки.

Бесконечные десятичные периодические дроби относятся к рациональным числам. Иначе говоря, любую периодическую дробь можно представить в виде обыкновенной, и наоборот.

Существуют и дроби, у которых после запятой бесконечно повторяющаяся последовательность отсутствует. В таком случае их называют непериодическими дробями.

К непериодическим десятичным дробям относятся те бесконечные десятичные дроби, в которых после запятой не содержится периода, т.е. повторяющейся группы цифр.

Непериодические дроби относятся к иррациональным числам. В обыкновенные дроби их не переводят.

Основные действия с десятичными дробями

С десятичными дробями можно производить следующие действия: сравнение, вычитание, сложение, деление и умножение. Разберем каждое из них отдельно.

Сравнение десятичных дробей может быть сведено к сравнению обыкновенных дробей, которые соответствуют исходным десятичным. Но бесконечные непериодические дроби свести к такому виду нельзя, а перевод десятичных дробей в обыкновенные зачастую является трудоемкой задачей. Как же быстро произвести действие сравнения, если нам нужно сделать это по ходу решения задачи? Удобно сравнивать десятичные дроби по разрядам таким же образом, как мы сравниваем натуральные числа. Этому методу мы посвятим отдельную статью.

Чтобы складывать одни десятичные дроби с другими, удобно использовать метод сложения столбиком, как для натуральных чисел. Чтобы складывать периодические десятичные дроби, необходимо предварительно заменить их обыкновенными и считать по стандартной схеме. Если же по условиям задачи нам надо сложить бесконечные непериодические дроби, то нужно перед этим округлить их до некоторого разряда, а потом уже складывать. Чем меньше разряд, до которого мы округляем, тем выше будет точность вычисления. Для вычитания, умножения и деления бесконечных дробей предварительное округление также необходимо.

Нахождение разности десятичных дробей обратно действию сложения. По сути, с помощью вычитания мы можем найти такое число, сумма которого с вычитаемой дробью даст нам уменьшаемую. Подробнее об этом расскажем в рамках отдельного материала.

Умножение десятичных дробей производится так же, как и для натуральных чисел. Для этого тоже подходит метод вычисления столбиком. Это действие с периодическими дробями мы опять же сводим к умножению обыкновенных дробей по уже изученным правилам. Бесконечные дроби, как мы помним, надо округлить перед подсчетами.

Процесс деления десятичных дробей является обратным процессу умножения. При решении задач мы также пользуемся подсчетами в столбик.

Положение десятичных дробей на оси координат

Можно установить точное соответствие между конечной десятичной дробью и точкой на оси координат. Выясним, как отметить точку на оси, которая будет точно соответствовать необходимой десятичной дроби.

Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми

Если мы находим не точку на оси, а десятичную дробь, соответствующую ей, то это действие называется десятичным измерением отрезка. Посмотрим, как правильно это сделать.

Допустим, нам нужно попасть от нуля в заданную точку на оси координат (или максимально приблизиться в случае с бесконечной дробью). Для этого мы постепенно откладываем единичные отрезки от начала координат, пока не попадем в нужную точку. После целых отрезков при необходимости отмеряем десятые, сотые и более мелкие доли, чтобы соответствие было максимально точным. В итоге мы получили десятичную дробь, которая соответствует заданной точке на оси координат.

Если мы не можем попасть в точку в процессе десятичного измерения, то значит, что ей соответствует бесконечная десятичная дробь.

Источник

Десятичные дроби

Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие десятичной дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Свойства десятичных дробей

Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:

Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:

Обучение на курсах по математике — отличный способ закрепить полученные знания на практике и подтянуть сложные темы.

Как записать десятичную дробь

Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.

Пример 1. Перевести обыкновенную дробь 16/10 в десятичную.

Пример 2. Перевести 37/1000 в десятичную дробь.

Ответ: 37/1000 = 0,037.

Как читать десятичную дробь

Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:

Сколько цифр после запятой?Читается, как
одна цифра — десятых;1,3 — одна целая, три десятых;
две цифры — сотых2,22 — две целых, двадцать две сотых;
три цифры — тысячных;23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных;
четыре цифры — десятитысячных;0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных;
и т.д.

Сохраняй наглядную картинку, чтобы быстрее запомнить.

Преобразование десятичных дробей

Чтобы ни одна задача не смутила вас своей формулировкой, важно знать, как преобразовывать десятичные дроби в другие виды. Сейчас научимся!

Как перевести десятичную дробь в проценты

Уже в пятом классе задачки по математике намекают, что дроби как-то связаны с процентами. И это правда: процент — это одна сотая часть от любого числа, обозначают его значком %.

Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить наше число на 100, как в примере выше.

А чтобы перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Давайте на примере:

Выразить дробь в процентах просто: сначала превратим её в десятичную дробь, а потом применим предыдущее правило.

2/5 = 0,4
0,4 · 100% = 40%

8/25 = 0,32
0,32 · 100% = 32%

Чтобы разрезать торт на равные кусочки и не обижать гостей, нужно всего-то запомнить соотношения частей и целого. Наглядная табличка — наш друг-помощник:

Преобразование десятичных дробей

Десятичная дробь — это число с остатком, где остаток стоит после целой части и разделяется запятой.

Смешанная дробь — это тоже число с остатком, но остаток записывают в виде простой дроби (с черточкой).

Чтобы переводить десятичные дроби в смешанные, не нужно запоминать особые алгоритмы. Достаточно понимать определения и правильно читать заданную дробь — этим школьники и занимаются в 5 классе. А теперь давайте потренируемся!

Пример 1. Перевести 5,4 в смешанное число.

Пример 2. Перевести 4,005 в смешанное число.

Ответ: 4,005 = 4 1/200.

Пример 3. Перевести 5,60 в смешанное число.

Как перевести десятичную дробь в обыкновенную

Не будем придумывать велосипед и рассмотрим самый простой способ превращения десятичной дроби в обыкновенную. Вот, как это сделать:

Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!

Действия с десятичными дробями

С десятичными дробями можно производить те же действия, что и с любыми другими числами. Рассмотрим самые распространенные на простых примерах.

Как разделить десятичную дробь на натуральное число

Пример 2. Разделить 183,06 на 45.

Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми

Ответ: 183,06 : 45 = 4,068.

Как разделить десятичную дробь на обыкновенную

Чтобы разделить десятичную дробь на обыкновенную или смешанную, нужно представить десятичную дробь в виде обыкновенной, а смешанное число записать, как неправильную дробь.

Пример 1. Разделить 0,25 на 3/4.

Пример 2. Разделить 2,55 на 1 1/3.

Ответ: 2,55 : 1 1/3 = 1 73/80.

Как умножить десятичную дробь на обыкновенную

Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила за 6 класс. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.

Пример 1. Умножить 2/5 на 0,8.

Пример 2. Умножить 0,28 на 6 1/4.

Ответ: 0,28 ∗ 6 1/4 = 0,8.

Источник

Десятичная запятая

Имеет особую форму записи: целая часть в десятичной системе счисления, затем запятая и затем дробная часть в десятичной системе счисления, причём количество цифр дробной части строго определяется размерностью дробной части: если это десятые доли, дробная часть записывается одной цифрой; если тысячные — тремя; десятитысячные — четырьмя и т. д.

Примеры

обыкновенная дробьдесятичная дробь
4 /100,4
79 395 /100079,395

Очевидно, в начало целой части и/или в конец дробной части можно дописывать сколько угодно нулей.

Существуют также бесконечные десятичные дроби — периодические и непериодические. Например, ⅓ записывается как бесконечная периодическая дробь 0,3333… или 0,(3). А число π записывается как бесконечная непериодическая дробь 3,141592…

Периодическая десятичная дробь называется чистой периодической дробью, если её период (группа повторяющихся цифр) начинается сразу после запятой, а период может содержать любое конечное число цифр. Так, дробь 1,(3) — чистая периодическая дробь. Если периодическая десятичная дробь содержит ещё число, заключённое между целой частью и периодом, то такая периодическая дробь называется смешанной; число периодической дроби, стоящее между целой частью и периодом, называется предпериодом этой дроби.

Очевидно, что всякая периодическая дробь является рациональным числом вида Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми, где Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми, Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятыми. Верно и обратное утверждение: всякое рациональное число вида Как называется цифры с запятыми. Смотреть фото Как называется цифры с запятыми. Смотреть картинку Как называется цифры с запятыми. Картинка про Как называется цифры с запятыми. Фото Как называется цифры с запятымиможно представить в виде десятичной периодической дроби.

Произношение десятичных дробей

В русском языке десятичные дроби читаются так: сначала произносится целая часть, потом слово «целых» («целая»), потом десятичная часть так, как если бы всё число состояло только из этой части, то есть числитель дроби — количественное числительное женского рода (одна, две, восемь и т. д.), а знаменатель — порядковое числительное (седьмая, сотая, двести тридцатая и т. д.).

Однако на практике часто встречается такое произношение: целая часть, союз «и», дробная часть.

Источник

Десятичные цифры

Десяти́чная систе́ма счисле́ния — позиционная система счисления по целочисленному основанию 10. Одна из наиболее распространённых систем счисления в мире. Для записи чисел наиболее часто используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами.

Предполагается, что основание 10 связано с количеством пальцев рук у человека.

Древнейшая известная запись позиционной десятичной системы обнаружена в Индии, в 595 г. Нуль в то время применялся не только в Индии, но и в Китае. В этих старинных системах, для записи одинакового числа использовались символы, рядом с которыми дополнительно помечали, в каком разряде они стоят. Потом перестали помечать разряды, но число всё равно можно прочитать, так как у каждого разряда есть своя позиция. А если позиция пустая, её нужно пометить нулём. В поздних вавилонских текстах такой знак стал появляться, но в конце числа его не ставили. Лишь в Индии нуль окончательно занял своё место, эта запись распространилась затем по всему миру.

Индийская нумерация пришла сначала в арабские страны, затем и в Западную Европу. О ней рассказал среднеазиатский математик аль-Хорезми. Простые и удобные правила сложения и вычитания чисел, записанных в позиционной системе, сделали её особенно популярной. А поскольку труд аль-Хорезми был написан на арабском, то за индийской нумерацией в Европе закрепилось неправильное название — «арабская».

Один десятичный разряд (дес.р) в десятичной системе счисления называется декада, децит.

В цифровой электронике одному десятичному разряду десятичной системы счисления соответствует один десятичный триггер.

В двоичных компьютерах применяют двоично-десятичное кодирование десятичных цифр, при этом для одной двоично-десятичной цифры отводится четыре двоичных разряда (двоичная тетрада). Так как четыре двоичных разряда имеют 16 состояний, то при двоично-десятичном кодировании 6 из 16 состояний двоичной тетрады не используются.

См. также

Полезное

Смотреть что такое «Десятичные цифры» в других словарях:

«ЦИФРЫ НЕ ПРИВОДЯТСЯ» — биржевой термин, сообщение о том, что информация на табло, тикере о сделках отстает на одну минуту от реальных сделок, совершаемых в операционном зале биржи, после чего на строке табло печатается, появляется, повторяясь, последнее число и… … Экономический словарь

ЦИФРЫ И СИСТЕМЫ СЧИСЛЕНИЯ — Интуитивное представление о числе, по видимому, так же старо, как и само человечество, хотя с достоверностью проследить все ранние этапы его развития в принципе невозможно. Прежде чем человек научился считать или придумал слова для обозначения… … Энциклопедия Кольера

ЦИФРЫ НЕ ПРИВОДЯТСЯ — на бирже: сообщение о том, что информация на тикере, на табло о сделках отстает на одну минуту от реальных сделок, совершаемых в операционном зале биржи, после чего на строке тикера печатается, повторяясь, последнее число и десятичные знаки цены… … Энциклопедический словарь экономики и права

ЦИФРЫ НЕ ПРИВОДЯТСЯ — сообщение, обозначающее, что информация о сделках на ленте тикера отстает на одну минуту от сделок, фактически совершаемых в операционном зале биржи. Затем на ленте печатается только последняя цифра и десятичные знаки цены до тех пор пока лента… … Большой экономический словарь

цифры не приводятся — биржевой термин, сообщение о том, что информация на тикере о сделках отстает на одну минуту от реальных сделок, совершаемых в операционном зале биржи, после чего на строке тикера печатается, повторяясь, последнее число и десятичные знаки цены… … Словарь экономических терминов

Арабские цифры — совр. знаки для обозначения чисел (количественных числительных), номеров, а с присоединением (наращением) падежного окончания и порядковых числительных. А. ц. перенесены в Европу арабами в XIII в. и широко распространились в ней во 2 й половине… … Издательский словарь-справочник

Двоичная система счисления — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

Числа с собственными именами — В этот список включены числа, имеющие собственные названия, не являющиеся стандартными сложносоставными названиями чисел. Именные названия степеней тысячи приводятся, только если у них есть иные названия. Содержание 1 Натуральные числа 1.1… … Википедия

МАНТИССА — (лат. mantissa). Десятичные цифры в логарифмах. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МАНТИССА 1) в логарифмах дробная часть (в виде десятичной дроби); 2) приставка, прибавление, придача. Словарь… … Словарь иностранных слов русского языка

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *