Как можно увеличить скорость диффузии
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Четыре фактора, которые влияют на скорость диффузии
Диффузия происходит из-за случайного движения частиц. Это обычно происходит из-за градиента концентрации, что означает, что молекулы перемещаются из области высокой концентрации в область более низкой концентрации.
Пример показан на изображении выше. Когда краситель добавляется в раствор, он со временем диффундирует. Сначала вы видите полосы синего цвета, проходящие через раствор, пока, наконец, весь раствор не станет синим, потому что концентрация красителя везде одинакова. В этот момент, хотя молекулы красителя все еще движутся, вы не сможете их почувствовать, поскольку синий краситель рассеял и окрасил весь объем жидкости.
Диффузия, таким образом, является пассивным процессом (это означает, что он не требует затрат энергии). Вещество перемещается из области высокой концентрации в область более низкой концентрации. Это движение продолжается до тех пор, пока концентрация вещества не выровняется. Как только концентрация выровняется, вещество все еще движется, но больше не будет иметь градиент концентрации. Это состояние называется динамическим равновесием.
Молекулы постоянно движутся вокруг из-за количества тепловой энергии, которую они имеют. Это движение зависит от размера частицы и среды, в которой она находится. Частицы всегда будут перемещаться в среде, но на общую скорость диффузии могут влиять многие факторы.
Концентрация: диффузия молекул полностью зависит от перемещения из области с более высокой концентрацией в область с более низкой концентрацией. Другими словами, диффузия происходит вниз по градиенту концентрации рассматриваемой молекулы. Если разница в концентрации выше, то молекулы будут снижаться градиент концентрации быстрее. Если разница в концентрации не так велика, молекулы не будут двигаться так быстро, и скорость диффузии уменьшится.
Температура: частицы движутся из-за кинетической энергии, связанной с ними. По мере повышения температуры кинетическая энергия, связанная с каждой частицей, также увеличивается. В результате частицы будут двигаться быстрее. Если они могут двигаться быстрее, то они также могут распространяться быстрее. И наоборот, когда кинетическая энергия, связанная с молекулами, уменьшается, их движение уменьшается. В результате скорость диффузии будет ниже.
Масса частиц: более тяжелые частицы будут двигаться медленнее и, следовательно, будут иметь меньшую скорость диффузии. С другой стороны, более мелкие частицы будут диффундировать быстрее, потому что они могут двигаться быстрее. Как и все ключевые факторы, влияющие на диффузию, движение частицы имеет первостепенное значение при определении замедления или ускорения диффузии.
Свойства растворителя: вязкость и плотность сильно влияют на диффузию. Если среда, через которую должна распространяться данная частица, является очень плотной или вязкой, то частице будет труднее диффундировать через нее. Так что скорость диффузии будет ниже. Если среда менее плотная или менее вязкая, частицы смогут двигаться быстрее и быстрее диффундировать.
Все факторы, влияющие на диффузию, могут иметь комбинированный эффект. Например, маленький ион может диффундировать быстрее через вязкий раствор, чем большая молекула сахара. Ион имеет меньший размер и поэтому может двигаться быстрее. Большая молекула сахара движется медленнее из-за своего размера. Вязкость раствора влияет на оба, но усугубит замедленную диффузию, которой подвергается большая молекула
Скорость диффузии
Вы будете перенаправлены на Автор24
Скорость диффузии
Диффузия относится к наиболее простым явлениям, которые изучаются в рамках курса физики. Этот процесс можно представить на бытовом ежедневном уровне.
Диффузия представляет собой физический процесс взаимного проникновения атомов и молекул одного вещества между такими же структурными элементами другого вещества. Итогом этого процесса становится выравнивание уровня концентрации в проникающих соединениях. Диффузию или смешивание можно видеть каждое утро на собственной кухне, когда происходит приготовление чая, кофе или иных напитков, в состав которых входит несколько основных компонентов.
Подобный процесс первый раз смог научно описать Адольф Фик в середине 19 века. Он дал ему оригинальное название, которое переводится с латинского языка как взаимодействие или распространение.
Скорость диффузии зависит от нескольких факторов:
В различных газах, где существуют очень большие расстояние между молекулами, скорость диффузии будет самой большой. В жидкостях, где расстояние между молекулами заметно меньше, скорость также уменьшает свои показатели. Самая маленькая скорость диффузии отмечается в твердых телах, поскольку в молекулярных связях наблюдается строгий порядок. Атомы и молекулы сами совершают незначительные колебательные движения на одном месте. Скорость протекания диффузии увеличивается при росте окружающей температуры.
Закон Фика
Скорость диффузии принято измерять количеством вещества, которое переносится за единицу времени. Все взаимодействия должны осуществляться через площадь поперечного сечения раствора.
Основной формулой скорости диффузии является:
Готовые работы на аналогичную тему
Такую формулу представил в виде математического описания Фик.
Согласно ей, скорость диффузии прямо пропорциональна градиенту концентрации и площади, через которую осуществляется процесс диффузии. Коэффициент пропорциональности определяет диффузию вещества.
Известный физик Альберт Эйнштейн вывел уравнения для коэффициента диффузии:
$D=RT/NA \cdot 1/6\pi\etaŋr$, где:
Из этих уравнений следует, что скорость диффузии будет возрастать:
Скорость диффузии уменьшается:
Если молярная масса увеличивается, тогда коэффициент диффузии уменьшается. В этом случае скорость диффузии также уменьшается.
Ускорение диффузии
Существуют различные условия, которые способствуют ускорению протекания диффузии. Быстрота диффузии зависит от агрегатного состояния исследуемого вещества. Большая плотность материала замедляет химическую реакцию. На скорость взаимодействия молекул влияет температурный режим. Количественной характеристикой скорости диффузии является коэффициент. В системе измерений СИ его обозначают в виде латинской большой буквы D. Он измеряется в квадратных сантиметрах или метрах на секунду времени.
Коэффициент диффузии равняется количеству вещества, которое распределяется среди другого вещества через определенную единицу поверхности. Взаимодействие должно осуществляться на протяжении единицы времени. Для эффектного решения задачи необходимо добиться условия, когда разность плотностей на обеих поверхностях будет равна единице.
Также на скорость диффузии в твердых телах, жидкости в газах влияет давление и излучение. Излучение может быть разных видов, в том числе индукционное, а также высокочастотное. Диффузия начинается при воздействии определенного вещества-катализатора. Они часто выступают в роли пускового механизма для возникновения стабильного процесса рассеивания частиц.
При помощи уравнения Аррениуса описывают зависимость коэффициента от температуры. Оно выглядит следующим образом:
Формула позволяет больше понять о характерных чертах всего процесса диффузии и определяет скорость реакции.
Специальные методы диффузии
Сегодня практически нельзя применить обычные методы для определения молекулярного веса белков. Они обычно основаны на измерении:
Для эффективного решения задачи применяются специальные методы, которые разработаны для исследования веществ с высокой молекулярной структурой. Они предполагают определение скорости диффузии или вязкости растворов.
Метод определения ориентации и формы пор по скорости диффузии основан на исследовании скоростей диализа. В мембране должна происходить в этот момент свободная диффузия.
Также для определения скорости диффузии натрия могут применяться различные радиоизотопы. Такой специальный метод применяется для решения поставленных задач в сфере минералогии и геологии.
Активно применяется метод диффузии, который основан на определении диффузии макромолекул в растворе. Он был разработан для полимерных материалов. Согласно методу, идет определение коэффициента диффузии, а затем по этим данным узнают среднемассовую молекулярную массу.
В настоящее время отсутствуют прямые методы определения скорости диффузии водорода в катализаторе. Для этого используется так называемый второй путь активации.
Для определения скорости принято использовать специальные приборы. Они отличаются по виду от поставленных практических и научных задач.
Диффузия
Цель: расширить знания о диффузии, объяснить физическую природу явления диффузии, подтвердить теоретические факты опытными результатами, обобщить приобретённые знания и сделать выводы
Диффузия – это взаимное проникновение одного вещества между молекулами другого.
Большую роль в жизни живой природы играют диффузионные процессы, определяющие нормальный обмен веществ между организмом и средой, а также между различными частями самого организма. Питание и дыхание – типичные диффузионные процессы. В процессе дыхания происходит диффузия кислорода О2 и углекислого газа СО2 через стенку легочного пузырька. Для понимания этих процессов необходимо учитывать условия, обеспечивающие или затрудняющие диффузию. Так, дыхание – диффузия кислорода из окружающей среды внутрь организма сквозь его покровы – происходит тем быстрее, чем больше поверхность соприкосновения тела и окружающей среды, и тем медленнее, чем толще и плотнее покровы тела. Отсюда понятно, что малые организмы, у которых размеры поверхности велики сравнительно с объемом тела, могут обходиться вовсе без специальных органов дыхания, удовлетворяясь притоком кислорода исключительно через наружную оболочку (если она достаточно тонка и увлажнена). У организмов более крупных дыхание через кожу может оказаться более или менее достаточным только при условии, если покровы чрезвычайно тонки (земноводные); при грубых покровах необходимы специальные органы дыхания. Основные физические требования к этим органам – максимум поверхности и минимум толщины и увлажненность покрова.
Бесспорно, анализируя этот аспект жизнедеятельности всех живых существ, диффузия играет огромную роль.
Проведем ряд опытов, доказывающих практическую значимость диффузии.
«Диффузия в жидкостях»
(учебник «Физика. 7 класс» А.В. Перышкин, Дрофа, 2012. Параграф 10, «Диффузия в газах, жидкостях и твердых телах», рис. 24, задание после параграфа № 2.)
Предметы и материалы
Проводим эксперимент
Капнем в воду немного йода и проследим за ее поведением.
Гипотеза
Действительно ли капля йода постепенно раствориться в воде, окрасив ее в соответствующий цвет.
Объясняем
«Сцепление свинцовых цилиндров»
(учебник «Физика. 7 класс» А.В. Перышкин, Дрофа, 2012. Параграф 11, «Взаимное притяжение и отталкивание молекул», рис. 26.)
Предметы и материалы
Проводим эксперимент
Перед началом опыта необходимо тщательно зачистить стугом свинцовые поверхности цилиндров. Устанавливаем цилиндры в устройство для фиксации, прижав их друг к другу зачищенными поверхностями прижимным винтом. Закручиваем прижимной винт. Подождав некоторое количество времени можно слабить прижимной винт, достать сцепленные цилиндры.
Гипотеза
Действительно ли два свинцовых цилиндра будут соединены между собой.
Объясняем
Зачищение свинцовых цилиндров необходимо для того, чтобы максимально выровнить поверхности и очистить от окисления. Тем самым мы добиваемся наиболее плотного прилегания одной поверхности к другой. На данном этапе очень хорошо заметно проявление сил притяжения между молекулами, когда они находятся очень близко друг к другу. Но чем дольше цилиндры будут сцеплены и находясь под некоторым грузом, все отчетливее будет взаимное проникновение молекул одного цилиндра между молекулами другого – диффузия.
«Зависимость диффузии от температуры»
(учебник «Физика. 7 класс» А.В. Перышкин, Дрофа, 2012. Параграф 10, «Диффузия в газах, жидкостях и твердых телах», задание после параграфа № 1.)
Предметы и материалы
Проводим эксперимент
Нальем в один стакан воду комнатной температуры, а в другой горячую воду. Опустим в каждый из стаканов по одной чайной ложке сахара.
Гипотеза
Действительно ли в стакане с горячей водой сахар раствориться быстрее.
Объясняем
Нам известно, что при любой температуре в веществе есть молекулы, двигающиеся довольно медленно, и молекулы, скорость которых высока. Если количество молекул вещества, имеющих высокую скорость, увеличивается, т. е. увеличивается средняя скорость молекул, то это значит, что температура вещества также увеличивается. Чем быстрее будут двигаться молекулы воды, тем чаще они будут соударяться с молекулами сахара, и тем быстрее будет происходить процесс взаимного перемешивания одного вещества с другим. С увеличением температуры процесс взаимного проникновения молекул воды между молекулами сахара – диффузия – происходит гораздо быстрее.
На практике
В природе
Интересные факты о диффузии
Около 27 тонн космической пыли падает на Землю каждый день. За год более 10 000 тонн пыли приземляется на Землю.
Если очень гладко отшлифованные пластинки свинца и золота положить одна на другую и поставить на них некоторый груз, то через 4-5 лет они проникнут взаимно друг друга на 1 мм.
В сказках диффузия помогает героям. Отрывок из ассирийской сказки «Царь Зимаз»: «Был у царя умный советник Аяз, которого он очень уважал. Как обычно бывает в таких случаях, у Аяза были враги, которые его оклеветали перед царем, и тот, послушав их, заключил его в тюрьму. Когда к Аязу пришла жена, он велел ей поймать большого муравья, привязать к его лапке крепкую нитку длиной сорок метров, к свободному концу её привязать верёвку такой же длину и пустить муравья по наружной стене тюрьмы в указанном месте. Как сказал Аяз, так жена и сделала. Сам же Аяз накрошил на окно камеры сахара и муравей по запаху сахара добрался до камеры, где сидел Аяз».
А пословицы – это сплошная диффузия:
«Как муравьи находят путь домой?»
Муравьи помечают свой путь капельками пахучей жидкости, они прижимаются брюшком к земле и передают ей свой запах. Некоторые муравьи не всегда бегут точно по намеченному пути, а сбоку от трассы, потому что запах достаточно силен. Потеряв след, они кругами вновь находят «дорогу» и спешат по ней. Муравьиные трассы бывают длиной несколько метров.
Благодаря диффузии, насекомые находят себе пищу. Бабочки, порхая меж растений, всегда находят дорогу к красивому цветку. Пчелы, обнаружив сладкий объект, штурмуют его своим роем.
А растение растет, цветет для них тоже благодаря диффузии. Ведь мы говорим, что растение дышит и выдыхает воздух, пьет воду, получает из почвы различные микродобавки.
Плотоядные животные находят своих жертв тоже благодаря диффузии. Акулы чувствуют запах крови на расстоянии нескольких километров, также как и рыбы пираньи.
Экология окружающей среды ухудшается за счёт выбросов в атмосферу, в воду химических и прочих вредных веществ, и это всё распространяется и загрязняет огромные территории. А вот деревья выделяют кислород и поглощают углекислый газ с помощью диффузии.
На принципе диффузии основано перемешивание пресной воды с соленой при впадении рек в моря. Диффузия растворов различных солей в почве способствует нормальному питанию растений.
Физические эксперименты. Скорость диффузии в жидкости
Опыты по диффузии
Опыт описан в учебнике А.В.Перышкин «Физика 7 кл».: учебник для общеобразовательных учреждений/ А. В. Перышкин. – М.: Дрофа, 2012.
Диффузия – явление, при котором происходит взаимное проникновение молекул одного вещества между молекулами другого (определение из учебника).
Цель – установить от чего зависит скорость диффузии в жидкости.
Диффузия объясняется непрерывным движением молекул вещества, скорость движения зависит от температуры. Поэтому гипотеза– скорость протекания диффузии в жидкости зависит от температуры.
Оборудование: стакан с холодной и горячей водой, марганцовка, лопатка.
Техника безопасности: осторожно обращаться с горячей водой и стеклянной посудой.
Описание хода проведения и результатов опыта.
Наблюдая явление диффузии в стакане с холодной и горячей воды увидела, что процесс диффузии протекает быстрее в горячей воде, чем в холодной. Гипотеза подтвердилась.
Обзор применения рассматриваемого явления на практике: зависимость скорости протекания диффузии от температуры используется во многих технологических процессах: заваривание чая или кофе, засолка, варка варенья, окрашивание тканей, стирка вещей.
На явлении диффузии основан процесс металлизации – покрытия поверхности изделия слоем металла или сплава для сообщения ей физических, химических и механических свойств. Применяется для защиты изделий от коррозии, износа, в декоративных целях. Так, для повышения твердости и жаростойкости стальных деталей применяют цементацию. Стальные детали помещают в ящик с графитовым порошком, который устанавливают в термической печи. Атомы углерода вследствие диффузии проникают в поверхностный слой деталей. Глубина проникновения зависит от температуры и времени выдержки деталей в термической печи. Также она используется при выплавке многих металлов, например, стали.
Обзор наблюдений рассматриваемого явления в природе: питание растений, насыщение воды кислородом, однородный состав атмосферы, физиологические процессы в организме человека (дыхание и пищеварение).
Наличие интересных фактов о рассматриваемом явлении:
– Старая ассирийская сказка «Царь Зимаар»: «Был у царя умный советник Аяз, которого он очень уважал. Как обычно бывает в таких случаях, у Аяза были враги, которые его оклеветали перед царем, и тот, послушав их, заключил его в тюрьму. Когда к Аязу пришла жена, он велел ей поймать большого муравья, привязать к его лапке крепкую нитку длиной сорок метров, к свободному концу её привязать верёвку такой же длину и пустить муравья по наружной стене тюрьмы в указанном месте. Как сказал Аяз, так жена и сделала. Сам же Аяз накрошил на окно камеры сахара и муравей по запаху сахара добрался до камеры, где сидел Аяз». Именно это явление спасло Аяза и помогло муравью найти камеру.
– Пословицы и поговорки, которые можно объяснить только благодаря знанию явления диффузии.
Опыты по силе трения
Опыт описан в учебнике А.В.Перышкин «Физика 7 кл».: учебник для общеобразовательных учреждений/ А. В. Перышкин. – М.: Дрофа, 2012.
При соприкосновении одного тела с другим возникает взаимодействие, препятствующее их относительному движению, которое называется трением. А силу, характеризующую это взаимодействие, называют силой трения. (из учебника)
Существуют три вида трения: трение покоя, трение скольжения, трение качения.
В УМК Перышкина А.В. исследуется только зависимость силы трения от веса тела, мы добавили эксперименты, о которых говорится косвенно (зависимость от площади поверхности, от рода трущихся поверхностей).
Цель – выяснить, от чего зависит сила трения скольжения.
Оборудование: деревянный брусок, динамометр, набор грузов, наждачная бумага, направляющая рейка.
Выдвижение гипотезы. Сила трения зависит от площади соприкосновения поверхности, от веса тела, от рода соприкасающихся поверхностей.
Описание и соблюдение техники безопасности в ходе проведения экспериментального исследования: быть аккуратным с оорудованием.
Описание хода проведения и результатов опыта:
Вывод: сила трения скольжения не зависит от площади соприкосновения тел.
Вывод: чем больше сила, прижимающая тело к поверхности (вес тела), тем больше возникающая при этом сила трения.
Fтр = 0, 6 Н (по наждачной бумаге)
Вывод: сила трения зависит от рода соприкасающихся поверхностей (шероховатости поверхности)
Обзор применения рассматриваемого явления на практике: без трения покоя ни люди, ни животные не могли бы ходить по земле, так как при ходьбе происходит отталкивание ногами от земли. Во время гололедицы трение между подошвой обуви и землёй мало, отталкиваться от земли очень трудно и ноги скользят. Для увеличения силы трения между подошвой обуви и льдом, тротуары посыпают песком. Трение обеспечивает скрепление различных материалов, деталей инструментов, различных устройств, сооружений. За счет трения между нитями не расползаются ткани, удерживаются на рукоятках молотки, топоры, лопаты и другие инструменты. Болты с гайками, гвозди, шурупы, клинья, скрепляют части конструкций силой трения. Трение помогает человеку удерживать предметы в руках. Без трения смычка о струны была бы невозможна игра на скрипке или виолончели.
Обзор наблюдений рассматриваемого явления в природе: у многих растений и животных имеются различные органы, служащие для хватания (усики растений, хобот слона, цепкие хвосты лазающих животных). Все они имеют шероховатую поверхность для увеличения силы трения.
Среди живых организмов распространены приспособления (шерсть, щетина, чешуйки, шипы, расположенные наклонно к поверхности), благодаря которым трение получается малым при движении в одном направлении и большим – при движении в противоположном направлении. На этом принципе основано движение дождевого червя. Щетинки, направленные назад, свободно пропускают тело червя вперед, но тормозят обратное движение. При удлинении тела головная часть продвигается вперед, а хвостовая остается на месте, при сокращении головная часть задерживается, а хвостовая подтягивается к ней.
Значительное трение существенно для рабочих поверхностей органов движения. Необходимым условием перемещения является надежное сцепление между движущимся телом и опорой. Сцепление достигается либо заостреньями на конечностях, либо мелкими неровностями, например, щетинками, чешуйками, бугорками. Необходимо значительное трение и для хватательных органов. Интересна их форма: это либо щипцы, захватывающие предмет с двух сторон, либо тяжи, огибающие его. В руке сочетается действие щипцов и полный охват со всех сторон; мягкая кожа ладони хорошо сцепляется с шероховатостями предметов, которые надо удержать.
Наличие интересных фактов о рассматриваемом явлении:
Опыты по теплопроводности
Опыт описан в учебнике А.В.Перышкин «Физика 8 кл».: учебник для общеобразовательных учреждений/ А. В. Перышкин. – М.: Дрофа, 2012.
Теплопроводность – явление передачи внутренней энергии ото одной части тела к другой или от одного тела к другому при их непосредственном контакте. (из учебника)
Все металлы имеют разное строение, поэтому они должны передавать тепло по-разному.
Выдвижение гипотезы. Теплопроводность у разных металлов должна быть различной.
Цель – пронаблюдать теплопроводность металлов.
Оборудование: стержни алюминиевый и латунный, пластилин, иголки, свечка, спички, два штатива.
Описание и соблюдение техники безопасности в ходе проведения экспериментального исследования: соблюдать технику безопасности при работе с свечкой.
Описание хода проведения и результатов опыта:
Наблюдения показали, что иголки от алюминиевого стержня стали отпадать быстрее, чем от латунного.
Вывод: теплопроводность у различных металлов неодинаковая.
Обзор применения рассматриваемого явления на практике: Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы, так их теплопроводность и прочность выше, чем у других материалов. Для горячего чая, чтобы не обжечься, выбирая между металлической или фарфоровой чашки нужно выбрать фарфоровую.
Из металла делают кастрюли, сковородки, противни, и другую посуду. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке.
Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью. Медь имеет хорошую теплопроводность и ее используют в паяльниках.
Обзор наблюдений рассматриваемого явления в природе:снег предохраняет озимые от вымерзания; воздух, лёд, снег, жир являются плохими проводниками тепла– это спасает жизнь многим животным, обитающим в лесах и водных средах (тетерев зимой спит, зарывшись головой в снег). Зимой водоёмы покрываются льдом, который препятствует дальнейшему их промерзанию, выживают многие представители водной фауны.
Наличие интересных фактов о рассматриваемом явлении:
Если изготовить сетку из проволоки, обеспечив хорошее соединение металла в местах перекрещивания проволоки, и поместить ее над газовой горелкой, то можно при включенном вентиле поджечь газ над сеткой, в то время как под сеткой он гореть не будет. А если зажечь газ под сеткой, то наверх через сетку огонь « не просочится»!
В те времена, когда еще не было электрических шахтерских лампочек, пользовались лампой Дэви.
Это была свеча, «посаженная» в металлическую клетку. И даже, если шахта наполнялась легковоспламеняющимися газами, лампа Дэви была безопасна и не вызывала взрыва – пламя не выходило за пределы лампы, благодаря металлической сетке.