уксусный альдегид нельзя окислить раствором
Шпаргалка по органической химии (15 стр.)
Химические свойства альдегидов обусловливаются наличием в их молекуле карбонильной группы. По месту двойной связи в молекуле карбонильной группы могут проходить реакции присоединения. Если, например, пары формальдегида вместе с водородом пропускать над нагретым никелевым катализатором, происходит присоединение водорода: формальдегид восстанавливается в метиловый спирт. Полярный характер двойной связи обусловливает и другие реакции альдегидов, например присоединение воды.
Особенности реакции присоединения воды: а) к углеродному атому карбонильной группы, который несет частичный положительный заряд, за счет электронной пары кислородного атома присоединяется гидроксильная группа; б) электронная пара π-связи переходит к атому кислорода карбонильной группы и к кислороду присоединяется протон;
Для реакции присоединения характерны:
1) гидрирование (восстановление) с образованием первичных спиртов RСН 2 ОН.
2) присоединение спиртов с образованием полуацеталей R-СН (ОН) – ОR.
В присутствии катализатора – хлороводорода НСl и при избытке спирта образуются ацетали RСН (ОR)2;
3) присоединение гидросульфита натрия NаНSO 3 с образованием гидросульфитных производных альдегидов.
Особенности реакции окисления альдегидов: взаимодействуют с аммиачным раствором оксида серебра (I) и с гидроксидом меди (II) с образованием карбоновых кислот.
Особенности реакции полимеризации альдегидов: 1) характерна линейная полимеризация; 2) характерна циклическая полимеризация (тримеризация, тетрамеризация).
Особенности реакции «серебряного зеркала»: 1) серебро появляется на стенках пробирки в виде блестящего налета; 2) в такой окислительно-восстановительной реакции альдегид превращается в кислоту (при избытке аммиака образуется соль аммония); 3) серебро выделяется в свободном виде; 4) в качестве окислителя альдегидов может быть использован также гироксид меди Сu(ОН) 2 ; 3) если к гидроксиду меди прибавить раствор альдегида и смесь нагреть, наблюдается образование желтого осадка гидроксида меди (I), которая превращается в красный оксид меди; 4) гидроксид меди (II) окисляет альдегид в кислоту, а сам восстанавливается до оксида меди (I).
Реакции с аммиачным раствором оксида серебра (I) и гидроксидом меди (II) могут служить для обнаружения альдегидов.
Карбонильные соединения могут быть восстановлены в спирты. Альдегиды восстанавливаются в первичные спирты, а кетоны – во вторичные. Некоторые методы позволяют восстановить карбонильную группу в метиленовую.
47. Применение и получение альдегидов
Применение альдегидов.
Из альдегидов наибольшее применение имеет формальдегид. Особенности применения формальдегида: используется обычно в виде водного раствора – формалина; многие способы применения формальдегида основаны на свойстве свертывать белки; в сельском хозяйстве формалин необходим для протравливания семян; формалин применяется в кожевенном производстве; формалин оказывает дубящее действие на белки кожи, делает их более твердыми, негниющими; формалин применяется также для сохранения биологических препаратов; при взаимодействии формальдегида с аммиаком получается широко известное лекарственное вещество уротропин.
Основная масса формальдегида идет на получение фенолформальдегидных пластмасс, из которых изготавливаются: а) электротехнические изделия; б) детали машин и др. Ацетальдегид (уксусный альдегид) в больших количествах используется для производства уксусной кислоты.
Восстановлением ацетальдегида в некоторых странах получают этиловый спирт.
Получение альдегидов:
1) общим способом получения альдегидов служит окисление спиртов;
2) если накалить в пламени спиртовки спираль из медной проволочки и опустить ее в пробирку со спиртом, то проволочка, которая покрывается при нагревании темным налетом оксида меди (II), в спирте становится блестящей;
3) обнаруживается также запах альдегида.
С помощью такой реакции получается формальдегид в промышленности.
Для получения формальдегида через реактор с раскаленной сеткой из меди или серебра пропускается смесь паров метилового спирта с воздухом;
4) при лабораторном получении альдегидов для окисления спиртов могут быть использованы и другие окислители, например перманганат калия;
5) при образовании альдегида спирт, или алкоголь, подвергается дегидрированию.
Особенности реакции гидратации ацетилена:
а) сначала идет присоединение воды к ацетилену по месту одной π-связи;
б) образуется виниловый спирт;
в) непредельные спирты, в которых гидроксильная группа находится у атома углерода, который связан двойной связью, неустойчивы и легко изомеризуются;
г) виниловый спирт превращается в альдегид:
д) реакция легко осуществляется, если пропускать ацетилен в нагретую воду, которая содержит серную кислоту и оксид ртути (II);
е) через несколько минут в приемнике можно обнаружить раствор альдегида.
В последние годы разработан и получает распространение способ получения ацетальдегида окислением этилена кислородом в присутствии хлоридов палладия и меди.
48. Формальдегид и ацетальдегид
Строение и свойства формальдегида: это бесцветный газ с резким удушливым запахом, ядовит; он хорошо растворим в воде; водный 40 %-ный раствор формальдегида называется формалином.
Химические свойства формальдегида.
Для формальдегида характерны реакции окисления и присоединения (в том числе и поликонденсации):
1) реакция окисления:
а) реакция окисления протекает очень легко – альдегиды способны отнимать кислород от многих соединений;
б) при нагревании формальдегида с аммиачным раствором оксида серебра (в воде оксид серебра нерастворим) происходит окисление формальдегида в муравьиную кислоту НСООН и восстановление серебра. Образование «серебряного зеркала» служит качественной реакцией на альдегидную группу;
г) альдегиды восстанавливают гидроксид меди (II) до гидроксида меди (I), который превращается в оранжевый оксид меди (I);
д) реакция протекает при нагревании: 2СuОН → Сu 2 О + Н 2 О;
е) эта реакция также может быть использована для обнаружения альдегидов;
2) реакция присоединения:
а) реакция присоединения протекает за счет разрыва двойной связи карбонильной группы альдегида;
б) присоединение водорода, которое происходит при пропускании смеси формальдегида и водорода над нагретым катализатором – порошком никеля, приводит к восстановлению альдегида в спирт;
в) формальдегид присоединяет также аммиак, гидросульфит натрия и другие соединения.
Способы получения формальдегида:
1) в промышленности формальдегид получают из метанола, пропуская пары спирта вместе с воздухом над нагретым до 300 °C медным катализатором: 2СН 3 ОН + O 2 → 2НСНО + 2Н 2 О;
2) важным промышленным способом является также окисление метана воздухом при 400–600 °C в присутствии небольшого количества оксида азота в качестве катализатора: СН 4 + O 2 → СН 2 О + Н 2 О.
Применение формальдегида: 1) формальдегид в больших количествах применяется для производства фенолоформальдегидных смол; 2) он служит исходным веществом для производства красителей, синтетического каучука, лекарственных веществ, взрывчатых веществ и др.
Особенности ацетальдегида: ацетальдегид (или уксусный альдегид, или этаналь) – это бесцветная жидкость с резким запахом, хорошо растворимая в воде; присоединение водорода к ацетальдегиду протекает в тех же условиях, что и к формальдегиду.
Особенности паральдегида: это жидкость, которая застывает в кристаллическую массу при 12 °C, а при нагревании в присутствии разбавленных минеральных кислот переходит в ацетальдегид; обладает сильным снотворным действием.
49. Реакция поликонденсации. Углеводы
Поликонденсация – это процесс образования высокомолекулярных соединений из низкомолекулярных, который сопровождается выделением побочного вещества (воды, аммиака, хлороводорода и других веществ).
Особенности реакции поликонденсации:
1) при полимеризации, в отличие от поликонденсации, выделения побочных веществ не происходит;
2) продукты поликонденсации (исключая побочные вещества) так же, как и продукты полимеризации, называются полимерами;
3) при реакции поликонденсации цепь растет постепенно: сначала взаимодействуют между собой исходные мономеры, далее образовавшиеся соединения поочередно реагируют с молекулами тех же мономеров, образуя в итоге полимерное соединение. Примером реакции поликонденсации может служить образование фенолоформальдегидных смол, которые употребляются для изготовления пластических масс;
4) реакция протекает при нагревании в присутствии катализатора (кислоты или щелочи);
5) в молекуле фенола атомы водорода подвижны, а карбонильная группа альдегида способна к реакциям присоединения, при этом фенол и формальдегид взаимодействуют между собой;
Химические свойства альдегидов и кетонов
Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:
Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.
Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода. |
Структурная формула альдегидов:
Структурная формула кетонов:
Химические свойства альдегидов и кетонов
1. Реакции присоединения
В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.
1.1. Гидрирование
Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:
1.2. Присоединение воды
При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.
1.3. Присоединение спиртов
При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.
В качестве катализаторов процесса используют кислоты или основания.
Полуацетали существует только при низкой температуре.
Полуацетали – это соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами. |
Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:
1.4. Присоединение циановодородной (синильной) кислоты
Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):
2. Окисление альдегидов и кетонов
Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).
В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.
При окислении альдегиды превращаются в карбоновые кислоты. Альдегид → карбоновая кислота
|