Тиристор ку202н чем можно заменить
Простое зарядное устройство
Обычно подзарядка аккумулятора в транспортном средстве происходит во время работы генератора. Однако, при длительном простое автомобиля, на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя. И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора. Однако стоимость зарядного устройства сильно «бьёт» по карману, и поэтому я решил сам собрать зарядное устройство. Оно позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы, устройства для резки пенопласта, автомобильного насоса-компрессора для подкачки колёс. Устройство не содержит дефицитных деталей и при исправных элементах не требует налаживания. Для данной схемы использован сетевой понижающий трансформатор ТС270-1(выдран из старого лампового телевизора) с напряжением вторичной обмотки 17В. Без внесения изменений подойдет любой с напряжением на вторичной обмотке от 17 до 22В. Корпус использован от блока управления станции катодной защиты газопровода КСС-600(охлаждение в корпусе естественное). В данном зарядном устройстве есть возможность, при возникшей необходимости, установить схему для зарядки малогабаритных аккумуляторов (типа Д-0.55С и др). При этом контроль зарядного тока осуществляется установленным миллиамперметром.
Принципиальная схема устройства показана на фото ниже.
Она представляет собой традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-4. Узел управления тринистором выполнен на аналоге однопереходного транзистора VT1, VT2. Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот. Диод VD5 защищает управляющую цепь тринистора от обратного напряжения, возникающего при включении тринистора VS1. Печатная плата устройства и монтажная плата на фото ниже.
Если у готового, используемого трансформатора на вторичной обмотке более 17В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26В до 200Ом). В случае, когда вторичная обмотка имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двухполупериодной схеме на двух диодах.
А при сборке выпрямителя точно по схеме подойдут следующие детали:
С1 — К73-11, емкостью от 0,47 до 1мкФ, а также К73-16, К42У-2, МБГП.
Диоды VD1 — VD4 могут быть любыми на прямой ток 10А и обратное напряжение не менее 50В (это серии Д242, КД203, КД210, КД213).
Вместо тринистора Т10-25 подойдут КУ202В — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тринисторами Т-160, Т-250 (В моём случае это Т10-25).
Транзистор КТ361А заменим на КТ361Б — КТ361Е, КТ3107, КТ502В, КТ502Г, КТ501Ж — КТ501К, а КТ315А — на КТ315Б — КТ315Д, КТ312Б, КТ3102А, КТ503В — КТ503Г, П307.
Вместо диода КД105Б подойдут диоды КД105В, КД105 или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СП3-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10А либо изготовить самому из любого миллиамперметра, подобрав к нему шунт.
Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.
Предохранитель FU1 – плавкий на 3А, FU2 – плавкий на 10А.
Диоды и тринистор необходимо установить на теплоотводы, каждый полезной площадью около 100см². Для улучшения теплового контакта данных деталей с теплоотводами желательно использовать теплопроводные пасты.
Фото моего устройства можно увидеть на фото ниже.
Дополнено:
Статья в сообществе DIY (Сделай Сам)
Статья в сообществе Кулибин Club
Тиристор 2у202н – Тиристор КУ202Н – технические характеристики, схема включения, цоколевка
Характеристики
Все его параметры можно разделить на два типа предельные и электрические. Давайте разберем их подробнее. Обратите внимание, что на указанных ниже предельных значениях устройство работать долгое время не может, это пиковые показатели которое он выдержит за очень маленький период.
Электрические параметры ку202н характеризуют работу тиристора в рабочих условиях. Ниже приведены их значения:
Аналоги
Зарубежными аналогами тиристора КУ202Н являются ВТХ32S100, H20T15CN, 1N4202. Зарубежные производители не выпускают устройств таких же геометрических размеров, что и КУ202Н, поэтому нужно будет изменить место под монтаж устройства. Следует также учитывать, что их параметры могут незначительно отличаться от рассматриваемого тиристора, например, средний ток может быть равен 7,5 А.
Кроме иностранных устройств можно использовать российский аналог — Т112-10. Как и КУ202Н он имеет металлический корпус и анодный выход под резьбу. Однако его размеры меньше, поэтому монтажное место все равно придется изменить.
КУ202 : электрические параметры
Схема подключения
Существует стандартная схема включения ку202н которой нужно придерживаться. Согласно ей между катодом и управляющим электродом подключается шунтирующий резистор сопротивлением 51 Ом. Отклонение от номинального значения не должно превышать 5 %.
Чтобы тиристор не вышел из строя не допускается подача управляющего тока, если напряжение на аноде отрицательное. Это может привести к выходу из строя устройства без возможности восстановления.
Особенности монтажа
К катоду и управляющему электроду нельзя прилагать усилие, большее 0,98 Н. Во время крепления прибора к теплоотводу усилие затяжки не должно быть выше 2,45 Нм.
Нельзя паять катод на расстоянии ближе 7 мм. от стеклянного корпуса. Для управляющего электрода допустимое расстояние для пайки 3,5 мм. Температура паяльника не должна быть выше +260 0 С. Время пайки не более 3 с.
Схема тиристорного регулятора на однопереходном транзисторе.
На рисунке ниже — схема тиристорного регулятора, с лампой накаливания в виде нагрузки.
R1 — 100 КОм — переменный, мощностью 0,5 Вт, любого типа. Резисторы R2 — 3 КОм, R3 — 1 КОм, R4 — 100 Ом, R5 — 30 КОм — МЛТ. VD1 — стабилитрон Д814В VD2 — КД105Б VD3 — КД202Р VS1 — КУ202Н Конденсатор С1 — 0,1МФ 400В., любого типа. Транзистор VT1 — КТ117А Плавкий предохранитель 0.5 — 1.5 Ампер(в зависимости от мощности лампы.)
На главную страницу В начало
Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт «Электрика это просто».
Проверка на исправность
Проверить тиристор ку202н на исправность можно мультиметром, начать ее следует с проверки n-p перехода между анодом и управляющим электродом. Он должен прозваниваться так же, как обычный диод, то есть при прямом подключении (положительное напряжение на управляющий электрод, а отрицательное на катод) сопротивление перехода должно быть небольшим, а при обратном подключении большим.
Для более детальной проверки требуется выполнить такие действия:
Проверка в режиме коммутации
Чтобы убедиться в работоспособности тиристора, достаточно собрать небольшую схему включения, состоящую из следующих компонентов:
Для осуществления проверки выполняем следующие шаги:
После чего лампочка или светодиод загорится. Чтобы он потух, необходимо отключить коммутируемую цепь или сменить полярность управляющего напряжения. Такой режим считается нормальным для работы и может применяться при любых постоянных напряжениях коммутации в разрешенных пределах. В случае с тиристором КУ202Н оно не должно превышать 400 В.
Что такое тиристор и их виды
Многие видели тиристоры в гирлянде «Бегущий огонь», это самый простой пример описываемого устройства и как оно работает. Кремниевый выпрямитель или тиристор очень похож на транзистор. Это многослойное полупроводниковое устройство, основным материалом которого является кремний, чаще всего в пластиковом корпусе. Из-за того, что его принцип работы очень схож с ректификационным диодом (выпрямительные приборы переменного тока или динисторы), на схемах обозначение часто такое же — это считается аналог выпрямителя.
Фото — Cхема гирлянды бегущий огонь
Бывают:
Тиристор 2У202Н | | Радиодетали в приборах
Тиристор 2У202Н Справочник содержания драгоценных металлов в радиодеталях основан на справочных данных различных организаций занимающихся переработкой лома радиодеталей, паспортах устройств, формулярах и других открытых источников. Стоит отметить, что реальное содержание может отличатся на 20-30% в меньшую сторону.
Тиристоры могут содержать золото, серебро, платину и МПГ (Металлы платиновой группы, Платиновая группа, Платиновые металлы, Платиноиды, ЭПГ). Силовые тиристоры содержат чистое серебро в виде пластин.
Содержание драгоценных металлов в тиристоре: 2У202Н
Золото: 0,0043193 Серебро: 0 Платина: 0 МПГ: 0 По данным: Роскосмоса
Принцип действия тиристора
Тиристор является силовым электронным не полностью управляемым ключом. Поэтому иногда в технической литературе его называют однооперационным тиристором, который может сигналом управления переводиться только в проводящее состояние, т. е. включаться. Для его выключения (при работе на постоянном токе) необходимо принимать специальные меры, обеспечивающие спадание прямого тока до нуля.
Тиристорный ключ может проводить ток только в одном направлении, а в закрытом состоянии способен выдержать как прямое, так и обратное напряжение.
Маркировка тиристора
Т 143 630 16 Т1 А3 УХЛ 1 2 3 4 5 6 7
1 Т – Тиристор; ТЛ – лавинный тиристор 2 Конструктивное исполнение 3 Средний ток в открытом состоянии; А 4 Класс по напряжению 5 Критическая скорость нарастания напряжения в закрытом состоянии 6 Группа по времени выключения 7 Климатическое исполнение
Маркировка быстродействующего тиристора
Т БИ 133 400 11 А2 В4 К4 УХЛ 1 2 3 4 5 6 7 8 9
1 Т – Тиристор 2 Б – быстродействующий; И – импульсный; Ч – частотный 3 Конструктивное исполнение 4 Средний ток в открытом состоянии; А 5 Класс по напряжению 6 Критическая скорость нарастания напряжения в закрытом состоянии 7 Группа по времени выключения 8 Группа по времени включения 9 Климатическое исполнение
Поделиться ссылкой:
Похожее
Применение тиристора
Назначение тиристоров может быть самое различное, например, очень популярен самодельный сварочный инвертор на тиристорах, зарядное устройство для автомобиля (тиристор в блоке питания) и даже генератор. Из-за того, что сам по себе прибор может пропускать как низкочастотные, так и высокочастотные нагрузки, его также можно использовать для трансформатора для сварочных аппаратов (на их мосте используются именно такие детали). Для контроля работы детали в таком случае необходим регулятор напряжения на тиристоре.
Фото — применение Тиристора вместо ЛАТРа
Не стоит забывать и про тиристор зажигания для мотоциклов.
Регулятор мощности
В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.
В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.
Тиристоры КУ202 кремниевые, планарно-диффузионные, структуры p-n-p-n, триодные, незапираемые. Предназначены для применения в качестве коммутаторов напряжения управляемых малыми управляющими сигналами. КУ202 выпускаются в металлостеклянном корпусе с жесткими выводами. Масса КУ202 (не более) – 14 г, с комплектующими деталями (не более) – 18 г.
Маркировка:
Название прибора приводится на корпусе.
Описание конструкции и принцип действия
Тиристор состоит из трех частей: «Анод», «Катод» и «Вход», состоящий из трех p-n переходов, которые могут переключаться из положений «ВКЛ» и «ВЫКЛ» на очень высокой скорости. Но при этом, он также может быть переключен с позиции «ВКЛ» с различной продолжительности по времени, т. е. в течение нескольких полупериодов, чтобы доставить определенное количество энергии к нагрузке. Работа тиристора можно лучше объяснить, если предположить, что он будет состоять из двух транзисторов, связанных друг с другом, как пара комплементарных регенеративных переключателей.
Фото — Тиристор КУ221ИМ
Несмотря на все меры безопасности, тиристор может непроизвольно переходить из одного положения в другое. Это происходит из-за резкого скачка тока, перепада температур и прочих разных факторов. Поэтому перед тем, как купить тиристор КУ202Н, Т122 25, Т 160, Т 10 10, его нужно не только проверить тестером (прозвонить), но и ознакомиться с параметрами работы.
Транзисторы КТ117
КТ117 представляет из себя специальный полупроводниковый прибор, так называемый — однопереходный транзистор. КТ117 предназначен для работы в генераторах, в качестве переключателя малой мощности. Коллектора у однопереходного транзистора нет, а есть эмиттер и две базы — 1 и 2.
Схема эквивалентная однопереходному транзистору КТ117 выглядит вот так:
А схема звукового генератора собранная на КТ117 может выглядеть вот таким образом:
Схема получается гораздо проще, поскольку один КТ117 заменяет здесь два обычных биполярных транзистора.
Проверка тиристора
Перед тем, как купить прибор, нужно знать, как проверить тиристор мультиметром. Подключить измерительный прибор можно только к так называемому тестеру. Схема, по которой можно собрать такое устройство, представлена ниже:
Фото — тестер тиристоров
Согласно описанию, к аноду необходимо подвести напряжение положительного характера, а к катоду – отрицательного. Очень важно использовать величину, которая соответствует разрешению тиристора. На чертеже показаны резисторы с номинальным напряжением от 9 до 12 вольт, это значит, что напряжение тестера немного больше, чем тиристора. После того, как Вы собрали прибор, можно начинать проверять выпрямитель. Нужно нажать на кнопку, которая подает импульсные сигналы для включения.
Проверка тиристора осуществляется очень просто, на управляющий электрод кнопкой кратковременно подается сигнал на открытие (положительный относительно катода). После этого если на тиристоре загорелись бегущие огни, то устройство считается нерабочим, но мощные приборы не всегда сразу реагируют после поступления нагрузки.
Фото — схема тестера для тиристоров
Помимо проверки прибора, также рекомендуется использовать специальные контроллеры или блок управления тиристорами и симисторами ОВЕН БУСТ или прочие марки, он работает примерно также, как и регулятор мощности на тиристоре. Главным отличием является более широкий спектр напряжений.
Видео: принцип работы тиристора
Параметры однопереходного транзистора.
Максимальный ток эмиттера — у КТ117А, КТ117Б, КТ117В, КТ117Г — 30мА.
Напряжение между базами — у всех КТ117 — 30в.
Напряжение между базой 2 и эмиттером — у всех КТ117 — 30в.
Максимальная рассеиваемая мощность — у всех КТ117 — 300мВт.
Межбазовое сопротивление:
У КТ117А,Б — от 4 до 9 кОм. У КТ117В,Г — от 8 до 12 кОм.
Максимальная рабочая частота — у всех КТ117 — 200кГц.
Коэффициент передачи — отношение напряжения включения к напряжению между базами: У КТ117А — от 0,5 до 0,7 У КТ117Б — от0,65 до 0,9 У КТ117В — от 0,5 до 0,7 У КТ117Г — от 0,65 до 0,9
Корпус транзистора пластиковый или металло-стекляный. Маркировка буквенно — цифровая.
Зарубежные аналоги КТ117А(Б,В,Г) — 2N6027, 2N6028.
Тиристор ку202г аналог чем заменить
Тиристор КУ 202Н купить можно еще во многих местах, потому что он является достаточно распространенным компонентом. Тем более его цена намного ниже, чем импортные аналоги. Также его можно найти во многих советских устройствах, начиная от блоков питания, заканчивая коммутационными приборами.
Конструкция
Конструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.
Особенности схемного подключения
Тиристор предназначен для коммутации напряжения в различных устройствах. Но при этом имеется стандартная схема его подключения, которую нарушать крайне не рекомендуется. Например, между катодом (вывод под пайку) и управляющим электродом необходимо подключить резистор в качестве шунтирующего компонента. Благодаря его присутствию управляющая цепь замыкается и обеспечивается насыщение перехода. Его сопротивление должно быть не более и не менее 51 Ом.
Если на аноде присутствует напряжение отрицательной полярности, то управляющий ток должен быть равен нулю. Иначе произойдет электрический пробой перехода, что приведет к неисправности всего устройства в целом. Дальнейшая его работа невозможна, как и обратное восстановление.
Технические параметры тиристора
Тиристор КУ202Н относится к группе высоковольтных устройств, предназначенных для работы при напряжении до 400 В с максимально допустимым прямым током в открытом состоянии не более 10 А. Всего в линейке имеется 12 моделей тиристоров с различными напряжениями в закрытом состоянии. Поэтому при выборе основным параметром является именно оно.
Для использования в цепях с напряжением от 300 и выше вольт предназначены тиристоры с буквенными обозначениями от К до Н. Что касается остальных параметров, то они остаются теми же. Довольно часто новички радиолюбители сталкиваются с такими проблемами, что приводит к дополнительным растратам.
Эти тиристоры довольно часто применяются в построении регуляторов мощности нагрузкой не более 2 кВт. Но крайне не рекомендуется его эксплуатировать в критических режимах. Следует пропускать через устройство ток не более 7-8 А, что будет обеспечивать наиболее эффективные и щадящие режимы.
Проверка тиристора
Многих интересует, тиристор КУ202Н как проверить и как правильно включить в устройстве для проверки его работоспособности. Дело в том, что довольно часто он оказывается неисправен по различным причинам. Притом дефекты встречаются и у новых изделий.
Проверить тиристор можно несколькими способами:
Второй способ применим только к серии устройств с буквенным индексом М и Н. При этом можно устанавливать напряжение прозвонки до 400 В. Устройства с буквами К и Л только до 300 В, Ж и И – до 200 В и так далее. Прежде чем проверять таким способом изделие, необходимо сверить его технические характеристики со справочной таблицей. Иначе можно повредить устройство, даже не использовав его по назначению.
Менее мощные тиристоры могут быть проверены обычным мультиметром в режиме прозвонки (значок диода и звукового сигнала). В обратном направлении он звонится как диод, в прямом – бесконечность.
Важно! При осуществлении проверки тиристора в режиме диода, необходимо УЭ объединить с А.
Проверка в режиме коммутации
Чтобы убедиться в работоспособности тиристора, достаточно собрать небольшую схему включения, состоящую из следующих компонентов:
Для осуществления проверки выполняем следующие шаги:
После чего лампочка или светодиод загорится. Чтобы он потух, необходимо отключить коммутируемую цепь или сменить полярность управляющего напряжения. Такой режим считается нормальным для работы и может применяться при любых постоянных напряжениях коммутации в разрешенных пределах. В случае с тиристором КУ202Н оно не должно превышать 400 В.
Аналоги КУ202Н
Как и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.
К зарубежным аналогам тиристора КУ202Н относятся устройства:
Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.
Простые схемы управления КУ202Н
На тиристор КУ202Н схема управления достаточно простая. Первый вариант был описан в разделе проверки устройства. Она включала батарейку на 1,5 В, лампочку и источник питания 12 В. Но также существует масса других способов элементарного подключения тиристора. Рассмотрим самую простую схему на его базе.
Регулятор мощности
В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.
В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.
Схема аналога тиристора (диодного и триодного) на транзисторах. Расчет параметров он-лайн. (10+)
Транзисторный аналог тиристора
В маломощных пороговых и нестандартных схемах транзисторные аналоги диодного (динистора) и триодного (тринистора) тиристоров применяются даже чаще, чем элементы, выполненные в одном кристалле. Причина в том, у серийных тиристоров высокий разброс параметров, а некоторые из очень важных для перечисленных схем параметров вообще не нормируются. А аналог можно изготовить со строго заданными параметрами.
Важнейшими параметрами тиристоров в пороговых и нестандартных схемах являются: ток отпирания (Io), напряжение отпирания или отпирающее напряжение (Uo), ток удержания (Ih), напряжение запирания или напряжение насыщения при токе удержания (Uc). Смотри вольт-амперную характеристику тиристора.
В силовых схемах аналоги не применяются потому, что сила тока базы каждого транзистора в тиристорном аналоге равна половине всего тока через схему. А у транзисторов, как правило, сила тока базы ограничена довольно небольшой величиной.
Вашему вниманию подборка материалов:
Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам
Принципиальная схема
Вывод (A) соответствует аноду, (K) – катоду, (C) – управляющему электроду. Вольт-амперная характеристика схемы соответствует приведенной выше, так что ее (схему) можно считать аналогом триодного тиристора (тринистора). Если управляющий электрод не подключать, то получится аналог диодного тиристора (динистора).
В схеме применяются комплиментарные пары транзисторов. У них одинаковые напряжения насыщения база – эмиттер и коллектор – эмиттер. Мы чаще всего используем КТ502, КТ503. Резисторы R2 и R3 равны между собой.
Расчет
Конечно, приведенные формулы дают приблизительный результат, так как параметры транзисторов имеют конструктивный разброс и зависят от температуры. Но эти расчеты позволяют получить начальную точку, с которой осуществляется тонкий подбор.
[Ток отпирания, мА] = [Напряжение насыщения база – эмиттер транзистора, В] / [Сопротивление R2, кОм] – [Ток управляющего электрода, мА]
Для аналога динистора ток управляющего электрода принимаем равным нулю.
[Отпирающее напряжение, В] = ([Ток отпирания, мА] + [Ток управляющего электрода, мА]) * [Сопротивление R2, кОм] + [Ток отпирания, мА] * ([Сопротивление R1, кОм] + [Сопротивление R3, кОм])
[Ток удержания, мА] = 2 * [Напряжение насыщения база – эмиттер транзистора, В] / [Сопротивление R2, кОм] – [Ток управляющего электрода, мА]
[Напряжение запирания, В] = [Напряжение насыщения база – эмиттер транзистора, В] + [Напряжение насыщения коллектор – эмиттер транзистора, В]
Применение
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.
Как не спутать плюс и минус? Защита от переполярности. Описание.
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст.
Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.
Резонансный инвертор, преобразователь напряжения повышающий. Принцип р.
Сборка и наладка повышающего преобразователя напряжения. Описание принципа работ.
В современных радиоэлектронных устройствах используется весьма широкий ассортимент самых разнообразных электронных приборов. Порой отсутствие одного или нескольких таких элементов может затормозить или даже прервать выполнение работы по монтажу или макетированию схемы.
Очень часто встречаются ситуации, когда необходимо один элемент заменить другим. Если речь идет о простой замене одного номинала резистора или конденсатора на другой, то решение задачи замены или подбора заменяющего номинала очевидно. Менее очевидны замены радиоэлементов, имеющих специфические, только им присущие свойства.
Ниже будут рассмотрены вопросы замены некоторых специальных полупроводниковых приборов их эквивалентами, выполненными из более доступных элементов.
В импульсной технике широко используют управляемые и неуправляемые коммутирующие элементы, имеющие вольт-амперную характеристику с N- или S-образным участком. Это лавинные транзисторы, газовые разрядники, динисторы, тиристоры, симисторы, однопереходные транзисторы, лямбда-диоды, туннельные диоды, инжекционно-полевые транзисторы и другие элементы.
В релаксационных генераторах импульсов, различных преобразователях электрических и неэлектрических величин в частоту широко используют биполярные лавинные транзисторы. Следует отметить, что специально такие транзисторы почти не выпускают. На практике в этих целях используют обычные транзисторы в необычном включении или режиме эксплуатации.
Эквивалент лавинного транзистора и динистора
Лавинный транзистор — полупроводниковый прибор, работающий в режиме лавинного пробоя. Такой пробой обычно возникает при напряжении, превышающем предельно допустимое значение.
Не допустить теплового пробоя (необратимого повреждения) транзистора можно при ограничении тока через транзистор (подключением высокоомной нагрузкой).
Лавинный пробой транзистора может наступать в «прямом» и «инверсном» включении транзистора. Напряжение лавинного пробоя при инверсном включении (полярность подключения полупроводникового прибора противоположна общепринятой, рекомендованной) обычно ниже, чем для «прямого» включения.
Вывод базы транзистора часто не используется (не подключается к другим элементам схемы). В ряде случаев базовый вывод соединяют с эмиттером через высокоом-ный резистор (сотни кОм — ед. МОм). Это позволяет в некоторых пределах регулировать величину напряжения лавинного пробоя.
На рис. 1 приведена схема равноценной замены «лавинного» транзистора интегрального прерывателя К101КТ1 ее дискретными аналогами. Интересно отметить, что при ближайшем рассмотрении эта схема тождественна эквивалентной схеме динистора (рис. 1), тиристора (рис. 2) и однопереходного транзистора (рис. 4).
Отметим попутно, что и вид вольт-амперных характеристик всех этих полупроводниковых приборов имеет общие характерные особенности. На их вольт-амперных характеристиках имеется S-образный участок, участок с так называемым «отрицательным» динамическим сопротивлением. Благодаря такой особенности вольт-амперной характеристики перечисленные приборы могут использоваться для генерации электрических колебаний.
Рис. 1. Аналог лавинного транзистора и динистора.
Эквивалент тиристора
Тиристоры, динисторы и им подобные элементы способны при весьма незначительных внутренних потерях управлять большими мощностями, подводимыми к нагрузке.
Тиристоры — приборы, обладающие двумя устойчивыми состояниями: состоянием низкой проводимости (проводимость отсутствует, прибор заперт) и состоянием высокой проводимости (проводимость близка к нулю, прибор открыт). Представители класса тиристоров [Вишневский А.И]:
Диодные тиристоры (динисторы), ассортимент которых не столь велик, различаются, главным образом, максимально допустимым постоянным прямым напряжением в закрытом состоянии.
Так, для динисторов типов КН102А, Б, В, Г, Д, Е, Ж, И (2Н102А — И) значения этих напряжений составляют, соответственно, 5, 7, 10, 14, 20, 30, 40, 50 В при обратном токе не более 0,5 мА. Максимально допустимый постоянный ток в открытом состоянии для этих полупроводниковых приборов равен 0,2 А при остаточном напряжении в открытом состоянии 1,5 В.
На рис. 1 приведена эквивалентная схема низковольтного динистора. Если принять R1=R3=100 Ом, можно получить динистор с управляемым (с помощью резистора R2) напряжением переключения от 1 до 25 В [Войцеховский Я., Р 11/73-40, Р 12/76-29]. При отсутствии этого резистора и при условии R1=R3=5,1 кОм напряжение переключения составит 9 Б, а при R1=R3=3 кОм —12 В.
Аналог тиристора р-п-р-п-структуры, описанный в книге Я. Войцеховского, показан на рис. 2. Буквой А обозначен анод; К — катод; УЭ — управляющий электрод. В схемах (рис. 1, 2) могут быть использованы транзисторы типов КТ315 и КТ361.
Необходимо лишь, чтобы подводимое к полупроводниковому прибору или его аналогу напряжение не превышало предельных паспортных значений. В таблице (рис. 2) показано, какими величинами R1 и R2 следует руководствоваться при создании аналога тиристора на основе германиевых или кремниевых транзисторов.
Рис. 2. Аналог тиристора.
В разрывы электрической цепи, показанные на схеме (рис. 2) крестиками, можно включить диоды, позволяющие влиять на вид вольт-амперной характеристики аналога. В отличие от обычного тиристора, его аналогом (рис. 2) можно управлять, используя дополнительный вывод — управляющий электрод УЭдоп, подключенный к базе транзистора VT2 (верхний рисунок) или VT1 (нижний рисунок).
Обычно тиристор включают кратковременной подачей напряжения на управляющий электрод УЭ. При подаче напряжения на электрод УЭдоп тиристор, напротив, можно перевести из включенного состояния в выключенное.
Аналог управляемого динистора
Аналог управляемого динистора может быть создан с использованием тиристора (рис. 3) [Р 3/86-41]. При указанных на схеме типах элементов и изменении сопротивления резистора R1 от 1 до 6 кОм напряжение переключения динистора в проводящее состояние изменяется от 15 до 27 В.
Рис. 3. Аналог управляемого динистора.
Эквивалент однопереходного транзистора
Рис. 4. Аналог однопереходного транзистора.
Эквивалентная схема используемого в генераторных устройствах полупроводникового прибора — однопереходного транзистора — показана на рис. 4. Б1 и Б2 — первая и вторая базы транзистора.
Эквивалент инжекционно-полевого транзистора
Инжекционно-полевой транзистор представляет собой полупроводниковый прибор с S-образной ВАХ. Подобные приборы широко используют в импульсной технике — в релаксационных генераторах импульсов, преобразователях напряжение-частота, ждущих и управляемых генераторах и т.д.
Такой транзистор может быть составлен объединением полевого и обычного биполярного транзисторов (рис. 5, 6). На основе дискретных элементов может быть смоделирована не только полупроводниковая структура.
Рис. 5. Аналог инжекционно-полевого транзистора п-структуры.
Рис. 6. Аналог инжекционно-полевого транзистора р-структуры.
Эквивалент низковольтного газового разрядника
На рис. 7 показана схема устройства, эквивалентного низковольтному газовому разряднику [ПТЭ 4/83-127]. Этот прибор представляет собой газонаполненный баллон с двумя электродами, в котором возникает электрический межэлектродный пробой при превышении некоторого критического значения напряжения.
Напряжение «пробоя» для аналога газового разрядника (рис. 7) составляет 20 В. Таким же образом, может быть создан аналог, например, неоновой лампы.
Рис. 7. Аналог газового разрядника – схема эквивалентной замены.
Эквивалентная замена лямбда-диодов
Совершенно особым видом ВАХ обладают полупроводниковые приборы типа лямбда-диодов, туннельных диодов. На вольт-амперных характеристиках этих приборов имеется N-об-разный участок.
Лямбда-диоды и туннельные диоды могут быть использованы для генерации и усиления электрических сигналов. На рис. 8 и рис. 9 показаны схемы, имитирующие лямбда-ди-од [РТЕ 9/87-35].
Практически в генераторах чаще используют схему, представленную на рис. 9 [ПТЭ 5/77-96]. Если между стоками полевых транзисторов включить управляемый резистор (потенциометр) либо транзистор (полевой или биполярный), то видом вольт-амперной характеристики такого «лямбда-диода» можно управлять в широких пределах: регулировать частоту генерации, модулировать колебания высокой частоты и т.д.
Рис. 8. Аналог лямбда-диода.
Рис. 9. Аналог лямбда-диода.
Эквивалентная замена туннельных диодов
Рис. 10. Аналог туннельного диода.
Туннельные диоды также используют для генерации и усиления высокочастотных сигналов. Отдельные представители этого класса полупроводниковых приборов способны работать до мало достижимых в обычных условиях частот — порядка единиц ГГц. Устройство, позволяющее имитировать вольт-амперную характеристику туннельного диода, показано на рис. 10 [Р 4/77-30].
Схема эквивалента варикапа
Варикапы — это полупроводниковые приборы с изменяемой емкостью. Принцип их работы основан на изменении барьерной емкости полупроводникового перехода при изменении приложенного напряжения.
Чаще на варикап подают обратное смещение, реже — прямое. Такие элементы обычно применяют в узлах настройки радио- и телеприемников. В качестве варикапов могут быть использованы обычные диоды и стабилитроны (рис. 11), а также их полупроводниковые аналоги (рис. 12 [F 9/73-434], рис. 13 [ПТЭ 2/81-151]).
Рис. 12. Схема аналога варикапа.
Рис. 13. Схема аналога варикапа на основе полевого транзистора.
Литература: Шустов М.А. Практическая схемотехника (Книга 1).
ВНИМАНИЕ! В оригинале в книге на рисунках 1 и 2 была обнаружена ошибка: к Аноду включен N-P-N транзистор, вместо PNP. В текущей статье, на рисунках, ошибки исправлены!
Нашел ошибки и оповестил нас о них – Иван Иванович.
Динистор лучше заменить на тиристор и стабилитрон или цепочка стабилитронов с анода на управляющий, проверено – работает надежно, искать транзисторы PNP на 250-300v проблемотично.
НИколай,можно раскурочить парочку сгоревших зарубежных телеков,покопаться в строчной развертке,взять оттуда выходные транзисторы(насколько помню,они там прямой проводимости).Если же нет,можно сделать аналог npn транзистора из нескольких pnp транзисторов.Раскрою принцип действия заменяющей цепочки.При подаче на базу транзистора прямой проводимости pnp структуры отрицательного импульса он открывается.Транзистор обратной проводимости npn структуры закрывается.Так,закрывая один транзистор можно открывать другой,имитируя работу транзистора прямой проводимости.При этом,правда,увеличивается емкость коллектора,но ее можно компенсировать,введя обратную связь.При этом правда,уменьшается коэффициент усиления,но это можно исправить увеличением числа каскадов.
Так же можно присмотреться и к ключу в блоке питания.