Как называются винты у вертолета
Устройство и работа несущего винта вертолета
Для того чтобы самолет или планер летал, нужна подъемная сила, а эта сила создается крылом. Поэтому главным в самолете является крыло, ибо в конечном счете Весь самолет может быть сведен в летающее крыло, без фюзеляжа, без оперения.
У вертолета роль крыла играет несущий винт. Даже если в летательном аппарате ничего больше нет, кроме несущего винта, мы можем принципиально назвать его «вертолетом».
Наверное, многие в детстве делали себе такой «вертолет», состоящий только ив одного винта, вырезанного из куска жести. Стартовым устройством для него служила обыкновенная катушка от ниток, вращающаяся на стержне.
Однако роль несущего винта вертолета гораздо более многогранна, чем роль крыла самолета.
Созданием подъемной силы еще не ограничивается назначение несущего винта.
Когда вы посмотрите на вертолет в горизонтальном полете, вы неизбежно обратите внимание на то, что фюзеляж носом наклонен к горизонту. При этом наклоненным вперед оказывается и несущий винт.
Полная аэродинамическая сила R, развиваемая несущим винтом и направленная перпендикулярно к плоскости вращения концов лопастей, в этом случае может быть разложена на две составляющие: направленную вертикально подъемную силу, которая поддерживает вертолет на заданной высоте, и силу, направленную по касательной к траектории полета, Р, которая на вертолете является силой тяги. За счет этой силы вертолет летит вперед. Таким образом, несущий винт в поступательном полете одновременно является и тянущим винтом.
Однако и этим не ограничивается роль несущего винта. У вертолета в отличие от самолета нет рулевых поверхностей, таких, как элероны, триммеры, рули направления и высоты. Да они и не имели бы смысла, так как во время полета не обдувались бы потоком воздуха и в силу этого не могли бы служить целям управления.
Ведь мы знаем, что для изменения положения тела, к нему нужно приложить внешнюю силу. В полете вертолет окружен воздухом, поэтому внешняя сила может быть только результатом взаимодействия каких-либо частей вертолета с воздушной средой. Для того чтобы возникла сила сопротивления воздуха, тело должно перемещаться с большей скоростью. Когда вертолет висит в воздухе, то этому условию не отвечает ни одна его часть, кроме винта. Поэтому роль органа управления вертолетом также возложена на несущий винт. Действуя ручкой управления, летчик с помощью особых устройств, о которых будет рассказано в следующих главах, добивается такого положения, которое равносильно изменению плоскости вращения несущего винта. При этом изменяет свое направление и полная аэродинамическая сила воздушного винта и обе ее составляющие. И если подъемная сила всегда направлена вертикально вверх, то вторая составляющая — по касательной к траектории полета.
В зависимости от угла наклона полной аэродинамической силы меняется не только направление, но и величины ее составляющих. Следовательно, управляя несущим винтом, летчик может изменять не только направление полета, но и скорость полета.
Для подъема или спуска вертолета летчик также воздействует на лопасти несущего винта, уменьшая или увеличивая одновременно и на одинаковую величину угол установки всех лопастей.
Если на вертолете отказывает двигатель, то, уменьшая углы атаки лопастей, летчик ставит несущий винт в положение самовращения (авторотации). Поддерживаемый подъемной силой, создаваемой винтом на этом режиме работы, вертолет совершает безопасный планирующий спуск.
Из сказанного выше ясно, что для понимания устройства и полета вертолета надо разобраться прежде всего в работе несущего винта; для того чтобы вертолет успешно мог летать, конструктор должен обеспечить надежность прежде всего несущего винта.
Летчики, инженеры, техники и механики, летающие на вертолетах и обслуживающие их, прежде всего должны следить за безукоризненным состоянием несущего винта.
Итак, несущий винт — вот что главное в вертолете
Пропеллерный режим возникает при вертикальном подъеме или висении вертолета.
Режим косой обдувки возникает при поступательном полете вертолета.
Режим самовращения возникает при отключении двигателя вертолета от несущего винта в полете, при этом винт вращается под действием потока воздуха.
Режим вихревого кольца возникает при снижении вертолета. При таком режиме поток воздуха, проходя сквозь ометаемую винтом поверхность сверху вниз, вновь подходит к винту сверху.
Однако в некоторых частных случаях, например, в пропеллерном режиме, его работа схожа с работой самолетного винта. Когда самолет находится на земле или летит горизонтально, его винт обдувается со стороны плоскости вращения (по оси). Когда вертолет находится на земле, висит в воздухе или поднимается вертикально вверх, его несущий винт также обдувается со стороны плоскости вращения (по оси). Различие при этом состоит только В ТОМ, что у самолета струи воздуха проходят через плоскость вращения винта в горизонтальном направлении, спереди назад, тогда как у вертолета — в вертикальном направлении, сверху вниз. При этом несущий винт захватывает воздух из зоны А сверху и отбрасывает его, закручивая, вниз, в зону. На место частиц воздуха, забранных из зоны А, поступают частицы воздуха из окружающей среды и частично из зоны Б, но уже вне плоскости вращения винта.
До того, как несущий винт был приведен во вращение, воздух над винтом н под ним находился в состоянии покоя С началом вращения винта приборы, внесенные с область действия винта, но находящуюся вдали от него, покажут наблюдателю, что в сечении 0—0 воздух по-прежнему находится в состоянии относительного покоя. Его давление равно атмосферному, а скорость. Расстояние от сечения 0—0, где еще не наблюдается влияния винта, до плоскости вращения винта есть величина переменная, которая зависит от вязкости среды и точности применяемых нами приборов. Чем точнее прибор, тем он дальше от винта зарегистрирует наличие скорости воздуха, частички которого будут устремлены к винту.
Если бы воздух был лишен сил вязкости, то действие винта сказалось бы бесконечно далеко.
Фактически ввиду того, что воздух представляет собой вязкую среду, влияние винта перестает ощущаться уже на расстоянии десятков метров.
Перенося наши приборы из сечения 0—0 все ближе к сечению, мы заметим постепенный прирост скорости воздуха, подсасываемого винтом. Та скорость, которую воздух имеет, подходя к сечению, называется индуктивной скоростью подсасывания. На основании закона сохранения энергии кинетическая энергия (энергия скорости движения) не может увеличиться без того, чтобы не уменьшался другой какой-либо вид энергии. И действительно, наряду с ростом скорости воздуха до ш, мы замечаем, что давление воздуха р0 при этом падает. Это значит, что увеличение скорости воздуха произошло за счет уменьшения давления. За винтом сечение потока сжимается и происходит еще большее увеличение скорости воздуха. Казалось бы, должно было последовать дальнейшее падение давления. Однако сразу за винтом давление растет до р-2. Не противоречит ли это закону сохранения энергии? Да, противоречит, если мы не примем во внимание того обстоятельства, что воздух извне (от винта) получил добавочную энергию (механическую). Механическая энергия винта, преобразуюсь в кинетическую и потенциальную энергию потока, увеличивает и скорость и давление воздуха одновременно.
В сечении сразу за винтом прибор нам показывает, что воздух по сравнению с сечением имеет скорость и», называемую скоростью отбрасывания. Причем скорость отбрасывания оказывается вдвое больше скорости подсасывания.
Далеко за винтом, в сечении (теоретически на бесконечном удалении), скорость и давление воздуха восстанавливаются до первоначальных значений. Энергия потока при этом из-за наличия сил вязкости рассеивается в пространстве.
Таково действие винта на воздух, которое является следствием приложения к винту энергии вращения. Этому действию соответствует ответное действие воздуха на винт, которое проявляется в виде силы тяги, являющейся проекцией полной аэродинамической силы R на ось, проходящую через втулку винта перпендикулярно плоскости его вращения. Если динамометр, соединенный с винтом, при остановленном винте показывал нулевое значение тяги, то по мере роста оборотов тяга будет все больше и больше возрастать. На режиме висения и вертикального подъема на всех других режимах полета
Величину тяги, создаваемой винтом, можно не только замерить, но и подсчитать.
Несущий винт вертолёта
Полезное
Смотреть что такое «Несущий винт вертолёта» в других словарях:
Несущий винт — вертолета Ми 2 Несущий (основной) винт воздушный винт с вертикальной осью вращения, обеспечивающий подъёмную силу летательному аппар … Википедия
несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… … Энциклопедия «Авиация»
несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… … Энциклопедия «Авиация»
несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… … Энциклопедия «Авиация»
несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… … Энциклопедия «Авиация»
НЕСУЩИЙ ВИНТ — вертолета воздушный винт, к рый создаёт необходимые аэродинамич. силы для осуществления полёта, а также обеспечивает управление вертолётом. Н. в. устанавливаются в верх. части вертолёта и отличаются числом лопастей (2 8), их конструкцией… … Большой энциклопедический политехнический словарь
несущий винт — воздушный винт, служащий для создания аэродинамической подъёмной силы у вертолёта, винтокрыла, автожира и для управления этими летательными аппаратами. Состоит из лопастей и втулки, устанавливаемой на валу двигателя. Несущие винты имеют от 2 до 8 … Энциклопедия техники
Соосный несущий винт — Колонка несущих винтов на Ка 26 Соосная схема схема, при которой пара установленных параллельно … Википедия
Вертолёт — Bell 205 … Википедия
вертолёт — летательный аппарат тяжелее воздуха, у которого подъёмная сила и тяга для горизонтального полёта создаются одним или двумя т. н. несущими винтами. Вертолёт может взлетать вертикально с места без разбега и садиться без пробежки, он может… … Энциклопедия техники
Из чего сделан несущий винт и лопасти у вертолета?
Главной составляющей вертолета является несущий винт, он состоит из втулки и лопастей. Чтобы понять, за счет чего вертолет летает, нужно узнать, из чего делают лопасти вертолета и втулку, как они устроены и как работают. Именно лопасти создают подъемную силу, за счет которой конструкция взлетает в воздух. Втулкой называют механизм, который запускает движение и делает возможным движения лопастей по угловой траектории. Лопасти подвергаются воздействию инерции и аэродинамических сил, перемещаясь горизонтально и вертикально. Также они могут поворачиваться, чтобы вертолет был управляем при подъеме. Рассмотрим это подробнее.
При проектировании несущего винта (НВ) конструкторы учитывают несколько основных параметров:
Из чего делают лопасти?
Лопасти устроены и работают вовсе не так, как крылья у самолета, так как они предназначены для иных условий. Главное различие в том, на вертолетные лопасти воздействуют не постоянные, а переменные нагрузки. Именно поэтому к материалу выдвигают особые требования, он должен быть очень прочным.
Критерии оценки материала для изготовления:
Не нужно хорошо разбираться в физике, чтобы понять, что железо не подойдет. В свое время для изготовления лопастей использовали дерево, алюминиевый и титановые сплавы, нержавеющую и легированную сталь. Сейчас им на смену пришло более практичное решение — композиционные материалы.
Чтобы получить композиционный материал, сочетаются два вещества с разными характеристиками. Обычно это жесткий армирующий наполнитель и матрица. В роли первого могут использоваться стекловолокно или углеродное волокно, в роли второго часто идет смола синтетического происхождения. Смола термоактивная, поэтому при нагревании она становится не только жесткой, но стойкой к химическим воздействиям.
Технология используется везде, где нужно снизить вес без ущерба другим характеристикам, в первую очередь в авиации. Углепластик из которого делают лучшие гоночные машины — тоже композитный материал. Со временем такие материалы становятся все лучше, конструкторы экспериментируют с разными составляющими для совершенствования характеристик. В вертолетостроении, как и в авиастроении в целом идет упор на интеллектуальные материалы: высокомодульные, устойчивые к высоким температурам, адаптирующиеся к разным условиям. От разработок в данной сфере и внедрения их в массовое производство зависит общий успех вертолетостроения.
При создании лопастей помимо типа материала нужно определиться с формой лонжерона. Обязательно происходит подгонка показателей жесткости и веса, это необходимо для отстройки резонанса. Чтобы обеспечить нужную степень стойкости, всегда особенный акцент делается на земном резонансе.
Земной резонанс
Так называют совпадение частоты колебаний вертолета и несущего винта. Оно должно достигаться в момент, когда конструкция находится на земле, отсюда и название — земной. В этот период амортизаторы не полностью зажаты, они не могут поглотить и компенсировать всех колебаний. Вибрации такого типа называют самовозбуждающимися, они наблюдаются только в поперечной плоскости.
Появилось это понятие не сразу, а после того, как в строение были добавлены вертикальные шарниры. Однако, при определенных условиях явление может коснуться и вертолетов с полозковыми шасси, когда они пребывают во взвешенном состоянии.
В воздухе лопастная часть НВ создает колебания вокруг расположенных вертикально шарниров, так работает сила Кориолиса. Под воздействием этой силы любой объект, который расположен в южном полушарии планеты при движении будет отклоняться влево, в северном — вправо. Она действует и на человека, которые прогуливается неспешным шагом, но влияние на объект, который движения в воздухе на высокой скорости, будет более ощутимым. Свою роль играет и переменное профильное сопротивление, которое меняется в зависимости от расположения в пространстве. Но такие колебания не будут иметь существенного значения, так как своими оборотами на полной скорости винт создает внушительные центробежные силы. И если центр вращения совпадает с центром тяжести секторов винта, то вибрации загасятся.
При пробеге и разбеге до или после взлета обороты будут ниже, соответственно центробежные силы тоже. Аппарат будет колебаться из-за неровной поверхности под ним, а также потому, что вышеперечисленные условия не будут соблюдены. За счет этого несущая система начнет раскачиваться, а с ней и весь корпус, дополнительную энергию колебания будет добавлять двигатель. Когда колебания несущей системы и всех конструкции не совпадают, появляется резонанс. И он может разорвать конструкцию, если пилот не примет верного решения. Рулевой винт начнет работать по принципу гироскопа, это приводит к повреждению хвостовой балки.
Когда возникает и как распознать?
Есть ряд условий, которые могут спровоцировать данное явление:
Пилоту несложно это распознать, при вертикальной посадке или пробежке по земле вертолет начинает раскачиваться, сначала на небольшую амплитуду, потом сильнее по нарастающей. Задачей пилота становится уменьшение энергии колебаний и при возможности избавление от их причин. Все это должно произойти очень быстро, так как разрушение корпуса может начаться уже через 6-7 секунд.
Режим вихревого кольца
Не менее опасное явление, когда под винтом сталкиваются два потока: набегающий снизу и индуктивный сверху. Так происходит при посадке, когда двигатель работает на небольшой поступательной скорости и высокой вертикальной. Вертолет начинает беспорядочно колебаться, и это требует моментальной реакции от пилота.
Признаками становятся не только колебания, но и самопроизвольный рост вертикальной скорости на посадке, изменения в частоте вращения винта, снижение эффективности управления. Пилот плавно увеличивает общий шаг винта, чтобы скинуть вертикальную скорость. Если сделать так не получается, то он будет повышать горизонтальную скорость, чтобы она стала более 40 км в час, достигнет этой величины и перестанет снижать вертолет увеличением шага. Если при посадке произошел перелет, то оптимальным решением станет пойти на второй круг и начать снижаться вовремя.
Тестирования несущего винта
Вторая важная деталь помимо лопастей — втулка. Она создается с учетом требований по использованию, например, чтобы она позволяла складывать лопасти во время простоя. В ней есть несколько типов шарниров: упругости, скольжения, качения, вертикальные, так обеспечивается нужный уровень мобильности. Обязательно применяется технология для упрочнения, так как от втулки зависит прочность и надежность всего механизма НВ. Готовые изделия проходят ряд испытаний, это необходимо для того, чтобы убедиться в соответствии всем стандартам, только потом начинается серийное производство.
Прочность подшипников втулки рассчитывается с запасом, чтобы она выдерживала нагрузки от всех маневров при полной загруженности, а также сопротивление воздуха с сильными непредсказуемыми потоками. Для проверки прочности составляется программа использования на износ. В таких проверках исследуют надежность как минимум трех образцов. Тестирования могут проводить не только в воздухе, но и на земле, но только при условии полного воссоздания всех условий и объема нагрузок. Необходимо проверить ресурс без вращающихся винтов, это делается при помощи специальных стендов, затем с ними, используя натурный вертолет или испытательные башни. Последняя стадия тестирования — в аэродинамической трубе.
Для лопастей предусмотрены усталостные тестирования, их цель — оценить долговечность в реальных условиях. То есть узнать, сколько деталь прослужит под влиянием меняющихся нагрузок. Для этого предусмотрены резонансные стенды, нагрузку на которые подает инерционное виброустройство, его устанавливают прямо на тестируемый экземпляр. Необходимо проверить устойчивость не только к поперечным нагрузкам, но при подгрузках в статическом режиме и от центробежной силы. Исследователи отмечают, под каким воздействием появляются усталостные трещины, как быстро они расходятся. Это позволяет определить оптимальный период проведения планового обслуживания, соответственно, продлить срок службы вертолета.
Таким образом добиваются безопасности, надежности и долговечности вертолетов, их совершенствования и более точного соответствия целям, для которых те предназначены. Совершенствуется все, и применяемые технологии, и материалы, из чего делают лопасти вертолета. Глобальные изменения переживают даже те части конструкции, которые десятилетиями считаются фундаментальными.
Как называются винты у вертолета
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
ВИНТЫ И ТРАНСМИССИЯ ВЕРТОЛЕТОВ
Термины и определения
Rotors and transmission of helicopters. Terms and definitions
Дата введения 1977-07-01
Постановлением Государственного комитета стандартов Совета Министров СССР от 25 мая 1976 г. N 1286 срок действия установлен с 01.07.1977 г. до 01.07.1982 г.*
ПЕРЕИЗДАНИЕ. Июнь 1977 г.
Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения основных понятий несущего и рулевого винтов и трансмиссии вертолетов.
Установленные настоящим стандартом термины и определения обязательны для применения в используемой в народном хозяйстве документации всех видов (включая унифицированные системы документации, общесоюзные классификаторы технико-экономической информации, тезаурусы и дескрипторные словари), научно-технической, учебной и справочной литературе.
Приведенные определения можно, при необходимости, изменять по форме изложения, не допуская нарушения границ понятий.
Для каждого понятия установлен один стандартизованный термин. Применение терминов-синонимов стандартизованного термина запрещается.
Недопустимые к применению термины приведены в стандарте в качестве справочных и обозначены пометой «Ндп».
Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных их краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.
В стандарте приведен алфавитный указатель содержащихся в нем терминов.
Несущий винт
Несущий (основной) винт — воздушный винт с вертикальной осью вращения, обеспечивающий подъёмную силу летательному аппарату (как правило, вертолётам), позволяющий выполнять управляемый горизонтальный полёт и совершать посадку. Основная функция такого винта — «нести» летательный аппарат, что и отражено в названии. [1]
Кроме вертолётов, несущие винты имеются у автожиров, винтокрылов, конвертопланов и у летающих платформ.
Содержание
Описание
Несущий винт вертолёта в общих чертах состоит из лопастей, втулки и шарниров.
Система управления несущим винтом состоит из автомата перекоса, соединенного с осевыми шарнирами лопастей несущего винта при помощи тяг (элементов, передающих поступательное движение). Поворот лопасти в осевом шарнире вызывает изменение угла установки лопасти.
Углом установки лопасти называется угол между хордой лопасти и конструктивной плоскостью вращения. Чем больше этот угол, тем большую подъёмную силу обеспечивает лопасть несущего винта.
Перемещение тарелки автомата перекоса вверх/вниз вдоль вала несущего винта приводит к одновременному изменению углов установки всех лопастей, тем самым регулируется мощность винта и, соответственно, высота висения(полета) летательного аппарата. Данное изменение называется общим шагом винта.
Наклон тарелки автомата перекоса относительно корпуса летательного аппарата называется циклическим шагом и позволяет управлять аппаратом в продольно-поперечной плоскости (тангаж-крен).
Частота вращения несущего винта, как правило, постоянна, а изменение нагрузки на винте автоматически компенсируется соответствующим изменением мощности двигателей.
Существуют системы управления, в которых отсутствуют осевые шарниры лопастей. Например, в моделях радиоуправляемых вертолетов изменяется наклон вращения всего винта, а не отдельных лопастей. В вариантах несущих винтов с сервозакрылками (синхроптеры фирмы Kaman Aircraft) изменяется угол установки закрылков, расположенных на задней кромке лопастей.
Участки лопасти, расположенные ближе к оси вращения и, соответственно, описывающие окружности меньшего радиуса, имеют меньшую линейную скорость относительно воздуха и создают пропорционально меньшую подъёмную силу. Для уменьшения этого эффекта лопасть закручивают таким образом, что её угол установки плавно увеличивается по мере приближения к оси вращения, что позволяет участкам с меньшим радиусом вращения обеспечивать большую подъёмную силу. Крутка лопастей (разница между углом установки участков в корне и на конце лопасти) может составлять 6-12°.
Соединение лопастей с валом может быть шарнирным, жёстким, полужёстким и упругим. При шарнирном и упругом соединении плоскость вращения несущего винта не может быть отклонена относительно фюзеляжа вертолёта, в отличие от полужёсткого соединения.
Несущий винт может иметь от двух до восьми лопастей. Лопасти могут быть деревянными, цельнометаллическими и композитными (стеклопластиковыми). Композитные лопасти по сравнению с цельнометаллическими менее трудоёмки в изготовлении, обладают значительно большими ресурсом, надёжностью и коррозионной стойкостью.
Существуют различные схемы вертолетов.
Большинство вертолётов в мире выполнено по «классической» схеме с одним несущим винтом и рулевым винтом на хвостовой балке. Существуют вертолёты с двумя несущими соосными винтами противоположного вращения, без рулевого винта (Ка-25, Ка-27, Ка-50). Для таких машин применяется термин «соосный несущий винт», при этом различают «верхний» и «нижний» винт. [2] [3]
В зависимости от положения несущего винта в потоке воздуха различают два основных режима работы: режим осевого обтекания, когда ось втулки винта расположена параллельно набегающему невозмущенному потоку, и режим косого обтекания, при котором поток воздуха набегает на несущий винт под углом к оси втулки.
Существует проект фиксируемого в полете несущего винта, так называемый X-Wing, устанавливаемый на вертолете Sikorsky S-72.
Несущий винт, заключённый в кольцевой канал, называют импеллером, такая конструкция увеличивает мощность винта и уменьшает шум, однако при этом увеличивается вес несущей конструкции.
Существуют также проекты несущего винта с дисковым крылом, например «Discrotor» Фирмы Boeing [4] или Вертолёт Эллехаммера (англ.). В проекте «Discrotor» лопасти несущего винта телескопические, во время полета лопасти могут убираться внутрь дискового крыла.
Вибрации
При вращении несущего винта возникают вибрации, которые могут вызывать преждевременный выход из строя приборов, оборудования, и даже приводить к разрушению летательного аппарата. К появлению вибрации относятся такие явления, как земной резонанс, флаттер и вихревое кольцо.
Земной резонанс
Этому явлению подвержены летательные аппараты, у которых лопасти несущего винта крепятся ко втулке посредством шарнирного соединения. Центр масс лопастей нераскрученного винта находится на его оси вращения. При вращении винта лопасти могут поворачиваться в своих вертикальных шарнирах, и их общий центр масс оказывается смещённым в сторону от оси вращения, что приводит к колебаниям втулки винта в горизонтальной плоскости. При совпадении гармоник этих колебаний и собственных колебаний вертолёта, стоящего на земле на упругом шасси, возникают неконтролируемые колебания вертолёта — земной резонанс.
Земной резонанс можно подавить, введя демпфирование как в вертикальном шарнире, так и в амортизационной стойке шасси вертолета. Более благоприятные условия для создания земного резонанса создаются при пробеге вертолета по земле. [5]
Флаттер
Флаттером называют самовозбуждающиеся колебания лопастей несущего винта, происходящие за счёт энергии воздушного потока и приводящие к быстрому нарастанию амплитуды махового движения. [6] Флаттер особенно опасен для соосной схемы, так как из-за этого эффекта происходит перехлест лопастей. Для избежания флаттера в лопасти несущего винта устанавливается противофлаттерный груз, а на втулке маятниковые виброгасители. На вертолетах с шарнирным и упругим типом соединения лопастей признаком появления флаттера во время полёта является «размывание» конуса несущего винта.
Вихревое кольцо
Вихревое кольцо — критический режим полёта вертолета, развивающийся при быстром снижении с малой поступательной скоростью. Характеризуется резкой потерей высоты и ослаблением реакции вертолета на перемещение органов управления. [7] Вертолёт резко увеличивает скорость снижения; вследствие турбулентного состояния потока в вихревом кольце возникает тряска вертолёта, ухудшается устойчивость и управляемость. [8]
Схемы крепления лопастей
Лопасти несущего винта крепятся к втулке, свободно вращающейся вокруг вала вертолета. Существует следующие основные виды таких соединений.
Шарнирное соединение
При шарнирном соединении, изобретенном Хуаном де Ла Сьерва, лопасти крепятся к корпусу втулки последовательно через осевой, вертикальный и горизонтальный шарниры. Благодаря шарнирному сочленению лопастей с корпусом втулки значительно снижаются переменные напряжения в элементах несущего винта и уменьшаются передающиеся от винта на фюзеляж вертолёта моменты аэродинамических сил.
Горизонтальные шарниры обеспечивают возможность махового движения лопастей вверх-вниз; вертикальные позволяют лопастям совершать колебания в плоскости вращения, возникающие под действием переменных сил лобового сопротивления и сил Кориолиса, появляющихся при колебаниях лопасти относительно горизонтального шарнира; осевые шарниры предназначены для изменения углов установки лопастей.
Во время полёта на вертолетах с шарнирным соединением можно увидеть, что лопасти в воздухе описывают не круг, а фигуру в виде воронки или конуса.
Упругое (бесшарнирное) соединение
Роль вертикального и горизонтального шарнира при таком соединении играет упругий элемент, изготовленный из композитных материалов, или торсион. Это позволяет по сравнению с шарнирным соединением уменьшить число деталей, уменьшить трудоемкость обслуживания, устранить необходимость смазывания и увеличить ресурс несущего винта в 3-10 раз. На несущем винте с таким соединением может быть значительно повышена эффективность управления по сравнению с шарнирным, что способствует увеличению манёвренности вертолёта, к тому же уменьшается явление «земного резонанса». [9]
Полужесткое соединение
При такой схеме две лопасти винта жестко крепятся к центральной втулке по типу качелей(коромысла): когда одна лопасть совершает маховое движение вверх, другая совершает симметричное движение вниз. Летчик, изменяя положение ручки управления вертолетом, тем самым изменяет положение всей плоскости вращения несущего винта. Вертолёт с полужесткой втулкой несущего винта обладает хорошими характеристиками управляемости. Важным преимуществом такой схемы является её простота (отсутствие высоконагруженных подшипников в шарнирах, демпферов и центробежных ограничителей свеса лопастей), облегчающая и удешевляющая изготовление винта и обслуживание его в эксплуатации. Вертолеты с полужесткой схемой серийно производят фирмы Bell и Robinson.
Жесткое соединение
Лопасти винта жестко крепятся к втулке, установленной на приводном валу, с использованием только осевого шарнира. Такая схема является самой простой, но в то же время наиболее подверженной разрушительным вибрациям. К тому же такая схема обладает повышенной массой по сравнению с шарнирным соединением. Стоит отметить, что переменные нагрузки на лопасти несущего винта в этом случае могут быть уменьшены за счет гибкости самих лопастей.
Жесткое соединение применяется в воздушных винтах самолётов и до изобретения Хуаном де Ла Сьерва шарнирного соединения использовалось на всех экспериментальных вертолетах начала 20-го века. В настоящее время такое соединение можно найти в несущих винтах вертолета Sikorsky X2.
Динамика несущего винта в полёте
При поступательном движении вертолёта в горизонтальной плоскости несущий винт обтекается встречным воздушным потоком. В случае его вращения по часовой стрелке лопасть, находящаяся слева по направлению полёта, движется навстречу воздушному потоку (наступающая лопасть), а находящаяся справа — попутно ему (отступающая лопасть). Соответственно, скорость наступающей лопасти относительно набегающего воздуха выше, чем скорость отступающей, и максимальна на азимуте 90°. Поскольку сопротивление воздуха и подъёмная сила пропорциональны скорости, наступающая лопасть создаёт большую подъёмную силу и испытывает большее сопротивление.
Линейная скорость пропорциональна расстоянию от оси вращения и, соответственно, максимальна на концах лопастей. При определённых значениях угловой скорости вращения винта линейная скорость концевых участков наступающей лопасти приближается к скорости звука, в результате чего на этих участках развивается волновой кризис. Напротив, скорость ряда участков отступающей лопасти относительно воздуха настолько мала, что на них происходит срыв потока, а участки, расположенные ещё ближе ко втулке, попадают в зону обратного обтекания (профиль лопасти обтекается воздухом с острой части, что создаёт обратную подъёмную силу).
Лопасти несущего винта, попадающие в зоны срыва потока и волнового кризиса, характеризуются увеличением вибраций и резким снижением подъёмной силы. Противодействовать срыву потока можно увеличением угловой скорость вращения несущего винта, однако при этом увеличивается зона волнового кризиса. Негативное влияние зоны волнового кризиса можно уменьшить, применив специальные законцовки лопастей винта — например, стреловидные.
Поскольку наступающие лопасти создают большую подъёмную силу, чем отступающие, для сохранения баланса подъёмных сил разных участков несущего винта существует механизм компенсации. Механизм основан на применении горизонтального шарнира и осевого шарнира, жестко соединённого с автоматом перекоса. Во время полёта лопасть находится под углом к обтекаемому воздушному потоку, возникаемое сопротивление воздуха приводит к взмаху лопасти вверх. Так как осевой шарнир соединён с автоматом перекоса, то при взмахе лопасти вверх происходит поворот лопасти в сторону уменьшения угла между лопастью и воздушным потоком. Уменьшение этого угла приводит к уменьшению подъёмной силы лопасти.
И наоборот, при уменьшении скорости обтекаемого воздушного потока лопасть опускается вниз, увеличивается угол установки лопасти, увеличивается подъёмная сила. [10]