Как называется угол 181 градусов
Таблица СИНУСОВ для углов от 0° до 360° градусов
СИНУС (SIN α) — это одна из прямых тригонометрических функций для углов, в прямоугольном треугольнике синус острого угла равен отношению противолежащего катета к его единственной гипотенузе.
α (радианы) | 0 | π/6 | π/4 | π/3 | π/2 | π | √3π/2 | 2π |
---|---|---|---|---|---|---|---|---|
α (градусы) | 0° | 30° | 45° | 60° | 90° | 180° | 270° | 360° |
SIN α (СИНУС) | 0 | 1/2 | √ 2/2 | √3 /2 | 1 | 0 | -1 | 0 |
Угол в градусах | Sin (Синус) |
---|---|
0° | 0 |
1° | 0.0175 |
2° | 0.0349 |
3° | 0.0523 |
4° | 0.0698 |
5° | 0.0872 |
6° | 0.1045 |
7° | 0.1219 |
8° | 0.1392 |
9° | 0.1564 |
10° | 0.1736 |
11° | 0.1908 |
12° | 0.2079 |
13° | 0.225 |
14° | 0.2419 |
15° | 0.2588 |
16° | 0.2756 |
17° | 0.2924 |
18° | 0.309 |
19° | 0.3256 |
20° | 0.342 |
21° | 0.3584 |
22° | 0.3746 |
23° | 0.3907 |
24° | 0.4067 |
25° | 0.4226 |
26° | 0.4384 |
27° | 0.454 |
28° | 0.4695 |
29° | 0.4848 |
30° | 0.5 |
31° | 0.515 |
32° | 0.5299 |
33° | 0.5446 |
34° | 0.5592 |
35° | 0.5736 |
36° | 0.5878 |
37° | 0.6018 |
38° | 0.6157 |
39° | 0.6293 |
40° | 0.6428 |
41° | 0.6561 |
42° | 0.6691 |
43° | 0.682 |
44° | 0.6947 |
45° | 0.7071 |
46° | 0.7193 |
47° | 0.7314 |
48° | 0.7431 |
49° | 0.7547 |
50° | 0.766 |
51° | 0.7771 |
52° | 0.788 |
53° | 0.7986 |
54° | 0.809 |
55° | 0.8192 |
56° | 0.829 |
57° | 0.8387 |
58° | 0.848 |
59° | 0.8572 |
60° | 0.866 |
61° | 0.8746 |
62° | 0.8829 |
63° | 0.891 |
64° | 0.8988 |
65° | 0.9063 |
66° | 0.9135 |
67° | 0.9205 |
68° | 0.9272 |
69° | 0.9336 |
70° | 0.9397 |
71° | 0.9455 |
72° | 0.9511 |
73° | 0.9563 |
74° | 0.9613 |
75° | 0.9659 |
76° | 0.9703 |
77° | 0.9744 |
78° | 0.9781 |
79° | 0.9816 |
80° | 0.9848 |
81° | 0.9877 |
82° | 0.9903 |
83° | 0.9925 |
84° | 0.9945 |
85° | 0.9962 |
86° | 0.9976 |
87° | 0.9986 |
88° | 0.9994 |
89° | 0.9998 |
90° | 1 |
Угол в градусах | Sin (Синус) |
---|---|
91° | 0.9998 |
92° | 0.9994 |
93° | 0.9986 |
94° | 0.9976 |
95° | 0.9962 |
96° | 0.9945 |
97° | 0.9925 |
98° | 0.9903 |
99° | 0.9877 |
100° | 0.9848 |
101° | 0.9816 |
102° | 0.9781 |
103° | 0.9744 |
104° | 0.9703 |
105° | 0.9659 |
106° | 0.9613 |
107° | 0.9563 |
108° | 0.9511 |
109° | 0.9455 |
110° | 0.9397 |
111° | 0.9336 |
112° | 0.9272 |
113° | 0.9205 |
114° | 0.9135 |
115° | 0.9063 |
116° | 0.8988 |
117° | 0.891 |
118° | 0.8829 |
119° | 0.8746 |
120° | 0.866 |
121° | 0.8572 |
122° | 0.848 |
123° | 0.8387 |
124° | 0.829 |
125° | 0.8192 |
126° | 0.809 |
127° | 0.7986 |
128° | 0.788 |
129° | 0.7771 |
130° | 0.766 |
131° | 0.7547 |
132° | 0.7431 |
133° | 0.7314 |
134° | 0.7193 |
135° | 0.7071 |
136° | 0.6947 |
137° | 0.682 |
138° | 0.6691 |
139° | 0.6561 |
140° | 0.6428 |
141° | 0.6293 |
142° | 0.6157 |
143° | 0.6018 |
144° | 0.5878 |
145° | 0.5736 |
146° | 0.5592 |
147° | 0.5446 |
148° | 0.5299 |
149° | 0.515 |
150° | 0.5 |
151° | 0.4848 |
152° | 0.4695 |
153° | 0.454 |
154° | 0.4384 |
155° | 0.4226 |
156° | 0.4067 |
157° | 0.3907 |
158° | 0.3746 |
159° | 0.3584 |
160° | 0.342 |
161° | 0.3256 |
162° | 0.309 |
163° | 0.2924 |
164° | 0.2756 |
165° | 0.2588 |
166° | 0.2419 |
167° | 0.225 |
168° | 0.2079 |
169° | 0.1908 |
170° | 0.1736 |
171° | 0.1564 |
172° | 0.1392 |
173° | 0.1219 |
174° | 0.1045 |
175° | 0.0872 |
176° | 0.0698 |
177° | 0.0523 |
178° | 0.0349 |
179° | 0.0175 |
180° | 0 |
Угол | Sin (Синус) |
---|---|
181° | -0.0175 |
182° | -0.0349 |
183° | -0.0523 |
184° | -0.0698 |
185° | -0.0872 |
186° | -0.1045 |
187° | -0.1219 |
188° | -0.1392 |
189° | -0.1564 |
190° | -0.1736 |
191° | -0.1908 |
192° | -0.2079 |
193° | -0.225 |
194° | -0.2419 |
195° | -0.2588 |
196° | -0.2756 |
197° | -0.2924 |
198° | -0.309 |
199° | -0.3256 |
200° | -0.342 |
201° | -0.3584 |
202° | -0.3746 |
203° | -0.3907 |
204° | -0.4067 |
205° | -0.4226 |
206° | -0.4384 |
207° | -0.454 |
208° | -0.4695 |
209° | -0.4848 |
210° | -0.5 |
211° | -0.515 |
212° | -0.5299 |
213° | -0.5446 |
214° | -0.5592 |
215° | -0.5736 |
216° | -0.5878 |
217° | -0.6018 |
218° | -0.6157 |
219° | -0.6293 |
220° | -0.6428 |
221° | -0.6561 |
222° | -0.6691 |
223° | -0.682 |
224° | -0.6947 |
225° | -0.7071 |
226° | -0.7193 |
227° | -0.7314 |
228° | -0.7431 |
229° | -0.7547 |
230° | -0.766 |
231° | -0.7771 |
232° | -0.788 |
233° | -0.7986 |
234° | -0.809 |
235° | -0.8192 |
236° | -0.829 |
237° | -0.8387 |
238° | -0.848 |
239° | -0.8572 |
240° | -0.866 |
241° | -0.8746 |
242° | -0.8829 |
243° | -0.891 |
244° | -0.8988 |
245° | -0.9063 |
246° | -0.9135 |
247° | -0.9205 |
248° | -0.9272 |
249° | -0.9336 |
250° | -0.9397 |
251° | -0.9455 |
252° | -0.9511 |
253° | -0.9563 |
254° | -0.9613 |
255° | -0.9659 |
256° | -0.9703 |
257° | -0.9744 |
258° | -0.9781 |
259° | -0.9816 |
260° | -0.9848 |
261° | -0.9877 |
262° | -0.9903 |
263° | -0.9925 |
264° | -0.9945 |
265° | -0.9962 |
266° | -0.9976 |
267° | -0.9986 |
268° | -0.9994 |
269° | -0.9998 |
270° | -1 |
Угол | Sin (Синус) |
---|---|
271° | -0.9998 |
272° | -0.9994 |
273° | -0.9986 |
274° | -0.9976 |
275° | -0.9962 |
276° | -0.9945 |
277° | -0.9925 |
278° | -0.9903 |
279° | -0.9877 |
280° | -0.9848 |
281° | -0.9816 |
282° | -0.9781 |
283° | -0.9744 |
284° | -0.9703 |
285° | -0.9659 |
286° | -0.9613 |
287° | -0.9563 |
288° | -0.9511 |
289° | -0.9455 |
290° | -0.9397 |
291° | -0.9336 |
292° | -0.9272 |
293° | -0.9205 |
294° | -0.9135 |
295° | -0.9063 |
296° | -0.8988 |
297° | -0.891 |
298° | -0.8829 |
299° | -0.8746 |
300° | -0.866 |
301° | -0.8572 |
302° | -0.848 |
303° | -0.8387 |
304° | -0.829 |
305° | -0.8192 |
306° | -0.809 |
307° | -0.7986 |
308° | -0.788 |
309° | -0.7771 |
310° | -0.766 |
311° | -0.7547 |
312° | -0.7431 |
313° | -0.7314 |
314° | -0.7193 |
315° | -0.7071 |
316° | -0.6947 |
317° | -0.682 |
318° | -0.6691 |
319° | -0.6561 |
320° | -0.6428 |
321° | -0.6293 |
322° | -0.6157 |
323° | -0.6018 |
324° | -0.5878 |
325° | -0.5736 |
326° | -0.5592 |
327° | -0.5446 |
328° | -0.5299 |
329° | -0.515 |
330° | -0.5 |
331° | -0.4848 |
332° | -0.4695 |
333° | -0.454 |
334° | -0.4384 |
335° | -0.4226 |
336° | -0.4067 |
337° | -0.3907 |
338° | -0.3746 |
339° | -0.3584 |
340° | -0.342 |
341° | -0.3256 |
342° | -0.309 |
343° | -0.2924 |
344° | -0.2756 |
345° | -0.2588 |
346° | -0.2419 |
347° | -0.225 |
348° | -0.2079 |
349° | -0.1908 |
350° | -0.1736 |
351° | -0.1564 |
352° | -0.1392 |
353° | -0.1219 |
354° | -0.1045 |
355° | -0.0872 |
356° | -0.0698 |
357° | -0.0523 |
358° | -0.0349 |
359° | -0.0175 |
360° | 0 |
Таблица синусов особенно нужна, когда у вас под рукой нет супер навороченного инженерного калькулятора с маленькой спасительной кнопкой с надписью «sin». В таком случае, чтобы узнать, чему же равняется синус определенного заданного угла, просто найдите информацию о интересующем градусе.
Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите полностью всё таблицу, на выделенном фоне нажмите уже правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».
Как пользоваться таблицей? Всё гораздо проще, чем Вы думаете, ищем в левой вертикальной колонке, соответствующий градус, и напротив него и будет указано нужное значение синуса для данного нужного нам угла.
Чему равен синус 45? …
— А вот собственно и сам ответ на поставленную задачку.sin 45 = 0.7071
Как называется угол 181 градусов
Как называются углы более 180 градусов,аналогично тому что углы более 90 градусов,называются тупыми углами. угол градус
В геометрии называют частью плоскости и лист бумаги (лист в тетради) и доску в классе на стене и поверхность стола. Всё, о чём будет говориться на ближайших страницах, относится к рисункам на части плоскости. Начинают обычно с простейших.
Это точки, их обозначают буквами латинского алфавита (рис.1).
Любые две точки можно соединить отрезком пользуясь линейкой (рис.2).
Соединяя точки A и B получаем единственный отрезок, который обозначают AB и говорят «отрезок AB» (рис.3).
Сами точка A и B называют концами отрезка AB. Каждый отрезок имеет определённую длину. Её находят прикладывая к отрезку линейку с делениями (рис.4).
Здесь длина отрезка AB равна 2,7см= 27мм, а длина отрезка MN равна 43мм = 4,3см. Каждый отрезок можно сделать короче или длиннее. На рис.5 отрезок AB сделан длиннее – получился более длинный отрезок AC, а отрезок MN сделали короче – получили отрезок ML.
Отрезок с концами А и В и его длину обозначают АВ. Два отрезка с общим концом (общий конец – точка А на рис.7) и часть плоскости между ними (на рис.7 эта часть отмечена тоном или дужкой) называют углом и говорят «угол BAC» (рис.7).
При этом точку А называют вершиной этого угла и она записывается на втором месте. Отрезки называют сторонами угла. На рис.7 отрезок АВ – одна сторона угла, а отрезок АС – другая сторона этого угла. Принята также запись ВАС для угла ВАС, знак заменяет слово угол. Два угла равны, если при наложении они совмещаются и пишут: ВАС = KMN. Это значит: вершина A совмещается с вершиной M, сторона AB накладывается на сторону MN (их длины могут быть разными), сторона AC накладывается на сторону MK и так, чтобы при этом отмеченные части плоскости тоже накладывались друг на друга. Можно совмещать и AB с MK, а AC с MN. Проверьте равенство CAB= KMN на рис.8, скопировав один угол и накладывая его на другой.
Теорема 11. При пересечении угла парой параллельных отрезков на его сторонах отсекаются пропорциональные отрезки.
Коротко говорят: с увеличением угла синус и тангенс увеличиваются, а косинус уменьшается.
Доказательство. На рис.40 у прямоугольного треугольника «вертикальный» катет равен 1 и указаны тангенсы углов. По рисунку ясно неравенство для тангенсов. Далее,
Из теорем 14 и 8 следует:
Теорема 15. В треугольнике против большего угла лежит большая сторона и обратно.
В геометрии называют частью плоскости и лист бумаги (лист в тетради) и доску в классе на стене и поверхность стола. Всё, о чём будет говориться на ближайших страницах, относится к рисункам на части плоскости. Начинают обычно с простейших.
Это точки, их обозначают буквами латинского алфавита (рис.1).
Любые две точки можно соединить отрезком пользуясь линейкой (рис.2).
Соединяя точки A и B получаем единственный отрезок, который обозначают AB и говорят «отрезок AB» (рис.3).
Сами точка A и B называют концами отрезка AB. Каждый отрезок имеет определённую длину. Её находят прикладывая к отрезку линейку с делениями (рис.4).
Здесь длина отрезка AB равна 2,7см= 27мм, а длина отрезка MN равна 43мм = 4,3см. Каждый отрезок можно сделать короче или длиннее. На рис.5 отрезок AB сделан длиннее – получился более длинный отрезок AC, а отрезок MN сделали короче – получили отрезок ML.
Отрезок с концами А и В и его длину обозначают АВ. Два отрезка с общим концом (общий конец – точка А на рис.7) и часть плоскости между ними (на рис.7 эта часть отмечена тоном или дужкой) называют углом и говорят «угол BAC» (рис.7).
При этом точку А называют вершиной этого угла и она записывается на втором месте. Отрезки называют сторонами угла. На рис.7 отрезок АВ – одна сторона угла, а отрезок АС – другая сторона этого угла. Принята также запись ВАС для угла ВАС, знак заменяет слово угол. Два угла равны, если при наложении они совмещаются и пишут: ВАС = KMN. Это значит: вершина A совмещается с вершиной M, сторона AB накладывается на сторону MN (их длины могут быть разными), сторона AC накладывается на сторону MK и так, чтобы при этом отмеченные части плоскости тоже накладывались друг на друга. Можно совмещать и AB с MK, а AC с MN. Проверьте равенство CAB= KMN на рис.8, скопировав один угол и накладывая его на другой.
Теорема 11. При пересечении угла парой параллельных отрезков на его сторонах отсекаются пропорциональные отрезки.
Коротко говорят: с увеличением угла синус и тангенс увеличиваются, а косинус уменьшается.
Доказательство. На рис.40 у прямоугольного треугольника «вертикальный» катет равен 1 и указаны тангенсы углов. По рисунку ясно неравенство для тангенсов. Далее,
Из теорем 14 и 8 следует:
Теорема 15. В треугольнике против большего угла лежит большая сторона и обратно.
В геометрии называют частью плоскости и лист бумаги (лист в тетради) и доску в классе на стене и поверхность стола. Всё, о чём будет говориться на ближайших страницах, относится к рисункам на части плоскости. Начинают обычно с простейших.
Это точки, их обозначают буквами латинского алфавита (рис.1).
Любые две точки можно соединить отрезком пользуясь линейкой (рис.2).
Соединяя точки A и B получаем единственный отрезок, который обозначают AB и говорят «отрезок AB» (рис.3).
Сами точка A и B называют концами отрезка AB. Каждый отрезок имеет определённую длину. Её находят прикладывая к отрезку линейку с делениями (рис.4).
Здесь длина отрезка AB равна 2,7см= 27мм, а длина отрезка MN равна 43мм = 4,3см. Каждый отрезок можно сделать короче или длиннее. На рис.5 отрезок AB сделан длиннее – получился более длинный отрезок AC, а отрезок MN сделали короче – получили отрезок ML.
Отрезок с концами А и В и его длину обозначают АВ. Два отрезка с общим концом (общий конец – точка А на рис.7) и часть плоскости между ними (на рис.7 эта часть отмечена тоном или дужкой) называют углом и говорят «угол BAC» (рис.7).
При этом точку А называют вершиной этого угла и она записывается на втором месте. Отрезки называют сторонами угла. На рис.7 отрезок АВ – одна сторона угла, а отрезок АС – другая сторона этого угла. Принята также запись ВАС для угла ВАС, знак заменяет слово угол. Два угла равны, если при наложении они совмещаются и пишут: ВАС = KMN. Это значит: вершина A совмещается с вершиной M, сторона AB накладывается на сторону MN (их длины могут быть разными), сторона AC накладывается на сторону MK и так, чтобы при этом отмеченные части плоскости тоже накладывались друг на друга. Можно совмещать и AB с MK, а AC с MN. Проверьте равенство CAB= KMN на рис.8, скопировав один угол и накладывая его на другой.
Если точнее,то тупой угол-больше 90градусов,но меньше 180градусов.Больше 180градусов-это уже полный угол,который соответствует 360градусам.Если уж до конца раскрывать вопрос по поводу углов,то 90градусов-это прямой угол,180-развернутый,меньше 90градусов-острые.
Угол называется прямым, если он равен 90°, острым, если он меньше прямого угла, т.е. меньше 90°, тупым, если он больше 90°, но меньше 180°, т.е. больше прямого, но меньше развёрнутого угла.
Мера выпуклого угла заключена между 0 и 180 градусами, а невыпуклого между 180 и 360 градусами.
как то так-эт интернет
Острые (от 0 до 90°)
Прямые (90°)
Тупые (от 90° до 180°)
Развернутые (180°)
Невыпуклые (от 180° до 360°)
Полные (360°)
домашняя работа не решается или решили проверить аудиторию и блеснуть своим знанием геометрии?
ну допустим 181 градус,так?тогда название берем от противоположного угла который будет 179
смотря под каким углом посмотреть, я бы называла тупым но медленно переходящий в острый
О_о угол больше 180 градусов,иди за премией нобелевской за открытие развёрнутых углов:)
Разве такие углы бывают? Подскажите! Интересно! Я ЗНАЮ ТОЛЬКО ОСТРЫЕ И ТУПЫЕ УГЛЫ
развернутый. или тупой, это смотря, с какой стороны от нуля его рассматривать
острыми? ну спросили бы что-нибудь полегче у меня по таким предметам б