Как называется треугольник в математике
Виды треугольников
Что такое треугольник в математике
Треугольник — геометрическая фигура, образующаяся в случае соединения трех отрезков с тремя точками, которые не лежат на одной прямой. Вершинами треугольника называют три точки, которые соединяются отрезками, а отрезки называют сторонами.
На рисунке видно, что угол A является углом, образованным двумя сторонами (AB+AC), он лежит напротив стороны BC. Угол B — угол, который образован сторонами BA+BC, лежит напротив стороны AC. Угол C является углом, который образован сторонами CB+CA, противолежит стороне AB.
Внутренний угол (угол треугольника) — угол, вершина которого соответствует вершине треугольника, его стороны проходят через стороны треугольника. Например, угол ABC — внутренний, как и углы CAB и ACB.
Буква в середине обозначения угла (например B в угле ABC) — вершина.
Углы и стороны треугольника являются элементами треугольника.
Рассмотрим основные определения для темы «треугольник».
Периметр — сумма всех длин сторон треугольника. Обычно обозначается буквой «P».
Периметр вычисляется по следующей формуле:
Периметр равнобедренного треугольника:
Периметр равностороннего треугольника:
Попробуем вычислить периметр треугольников:
Треугольная форма часто встречается в быту. Например, часто ее используют в процессе строительства различных зданий, мостов и тд. В процессе строительства крыш используются стропила треугольной формы.
Как и у всех геометрических фигур, у треугольника есть понятие равенства.
Два треугольника могут быть названы равными, если возможно их скомбинировать в результате наложения друг на друга, то есть скомбинировать их стороны, вершины, углы.
Возьмем бумажный лист прямоугольной формы, разрежем на две части. У нас получаются прототипы равных треугольников. Можно наложить один на другого и убедиться, что они наложатся друг на друга идеально.
У равных треугольников FAC и F1A1C1 будут скомбинированы стороны, вершины и углы.
Важно запомнить, что в равных треугольниках:
То есть, в треугольниках FAC и F1A1C1 напротив сторон AC и A1C1 будут лежать абсолютно равные углы F и F1. Напротив углов C и C1 будут лежать стороны FA и F1A1.
Основные свойства
Основные свойства треугольника:
Виды треугольников
По свойствам углов выделяют три вида треугольников:
Рассмотрим внешний вид данных треугольников:
По свойствам сторон выделяют:
Равнобедренный треугольник — такая фигура, две стороны которой равны. Равные части такой фигуры будут называться боковыми сторонами, а третья сторона будет носить название основания.
И остроугольный, и тупоугольный, и прямоугольный треугольники могут быть равнобедренными.
Посмотрите на рисунки равнобедренных треугольников:
Рассмотрим свойства равнобедренных треугольников:
Равносторонний треугольник — фигура, стороны и углы которой являются равными.
Как найти площадь данной фигуры?
Как найти высоту данной фигуры?
Прямоугольный треугольник — фигура, угол которой равен 90 градусам.
Рассмотрим свойства данной фигуры:
Все основные формулы треугольника
Рассмотрим формулы, по которым можно вычислить площадь треугольника:
Формула площади по высоте и стороне.
Вместо стороны A могут быть и показатели других сторон.
В данной формуле полупериметр вычисляется: p = a + b + c 2
По двум сторонам, а также углу между этими сторонами — половина произведения двух сторон, умноженная на синус угла между этими сторонами.
S = 1 2 a × b × sin γ
По трем сторонам, а также радиусу описанной окружности:
По трем сторонам, а также радиусу вписанной окружности. Площадь = произведение полупериметра на радиус вписанной окружности.
Рассмотрим также подобия треугольников.
Подобные треугольники — такие фигуры, в которых соответствующие углы являются равными, а стороны сходственные являются пропорциональными.
Таким образом, треугольник ABC будет подобен MNK. Так угол альфа будет равен углу альфа1, угол бета будет равен углу бета1, угол гамма будет равен углу гамма1. Иначе ABMN будет равно BCNK будет равно ACMK будет равно k.
Коэффициент k = коэффициент подобия.
Рассмотрим признаки подобия треугольников:
Вписанная окружность — такая окружность, которая касается треугольник со всех трех сторон.
Посмотрите на вписанную окружность:
Основные свойства вписанной окружности:
Треугольник. Медиана, биссектриса, высота, средняя линия.
теория по математике 📈 планиметрия
Треугольник – это геометрическая фигура, состоящая из трех точек на плоскости, которые не лежат на одной прямой, и трех последовательно соединяющих их отрезков.
Точки называют вершинами треугольника, а отрезки – сторонами. Вершины треугольника обозначают заглавными латинскими буквами.
Виды треугольников по углам
Треугольники классифицируются по углам: остроугольные; тупоугольные; прямоугольные.
Виды треугольников по сторонам
Треугольники классифицируются по сторонам: разносторонний; равнобедренный; равносторонний.
Разносторонний | Равнобедренный | Равносторонний |
Треугольник называется разносторонним, если у него длины всех сторон разные. На рисунке показан такого вида треугольник АВС. | Треугольник называется равнобедренным, если у него две стороны равны. На рисунке показан равнобедренный треугольник АВС, у которого АВ=ВС. | Треугольник называется равносторонним, если у него все стороны равны. На рисунке показан такой треугольник, у него АВ=ВС=АС. |
Медиана, биссектриса, высота, средняя линия треугольника
Медиана
Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.
В любом треугольнике можно провести три медианы, так как сторон – три. На рисунке показаны медианы треугольника АВС: AF, EC, BD.
По данному рисунку также видно, что медианы треугольника пересекаются в одной точке – точке О. Это справедливо для любого треугольника.
Биссектриса
Биссектрисой треугольника называется луч, исходящий из вершины угла треугольника и делящий его пополам.
В любом треугольнике можно провести три биссектрисы, так как углов – три. На рисунке показаны биссектрисы треугольника ЕDC: DD1, EE1 и CC1.
По рисунку также видно, что биссектрисы имеют одну точку пересечения. Это справедливо для любого треугольника.
Высота
Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к противоположной стороне.
На рисунке показаны высоты треугольника АВС: АН1, ВН2 и СН3.
По рисунку видно, что высоты треугольника пересекаются в одной точке. Это также справедливо для любого треугольника.
Средняя линия
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке показаны три средние линии треугольника АВС: MN, KN и MK.
Средняя линия обладает следующими свойствами: она параллельна противоположной стороне; она равна половине противоположной стороны. Так, на данном рисунке MN параллельна АС, KN параллельна АВ, MK параллельна ВС. Также MN=0,5АС, KN=0,5АВ и MK=0,5ВС. Например, если известно, что сторона АС=20 см, то средняя линия МN равна половине АС, то есть МN=10 см. Или, например, если средняя линия МК=12 см, то сторона ВС будет в два раза больше, то есть ВС=24 см.
Выполним чертеж окружности, описанной около треугольника АВС, покажем на нём все дополнительные элементы.
Рассмотрим треугольники АВЕ и АВF: у них углы АВЕ и АFВ прямые, угол ЕАВ – общий, следовательно, эти треугольники подобны.
Составим отношение сторон:
Рассмотрим треугольники АСЕ и ADF, у которых углы АСЕ и AFD прямые, а угол FAD – общий. Значит, треугольники АСЕ и ADF подобны.
Составим отношение сторон:
Теперь найдем CD=AC-AD=54-24=30
pазбирался: Даниил Романович | обсудить разбор | оценить
На клетчатой бумаге с размером клетки 1х1 изображен треугольник АВС. Найти длину его средней линии, параллельной стороне АС.
Для решения задачи надо вспомнить свойство средней линии: она параллельна основанию и равна его половине. Следовательно, чтобы найти длину средней линии, надо сторону треугольника разделить пополам. Найдем сторону треугольника, которой параллельна средняя линия, т.е. АС, сосчитав клетки, получим, что АС равна 8. Значит, средняя линия равна 8:2=4.
pазбирался: Даниил Романович | обсудить разбор | оценить
Ключевое слово в данной задаче – биссектриса. Вспоминаем, что она делит угол пополам. Нам надо найти величину угла ВАD, следовательно он равен половине угла ВАС, то есть 84 0 :2=42 0
pазбирался: Даниил Романович | обсудить разбор | оценить
Что означает ΔT?
Принимая это во внимание, какой символ у подсудимого?
Греческая буква дельта, треугольник, является сокращенным обозначением Ответчика. Это символ раздела, также известный как «двойная S».
Также знайте, что означает Y в физике? Что должность значить? В физика, мы любим точно описывать движение объекта. Переменная y часто используется для обозначения вертикального положения. [А как насчет z?] Переменная zz zz используется для описания третьей перпендикулярной оси, которая обычно указывает «за пределы экрана / страницы».
Как вставить дельту?
Что это за символ ψ?
Пси (/ (p) sa? /; Прописные буквы Ψстрочные ψ; Греческий: ψι psi [ˈpsi]) является 23-й буквой греческого алфавита и имеет числовое значение 700. И в классическом, и в современном греческом языке буква обозначает комбинацию / ps / (как в английском слове «lapse»).
Какой альтернативный код у треугольника?
код | символ | описание |
---|---|---|
30 | ? | Треугольник вверх |
31 | ? | Треугольник вниз |
16 | ? | Треугольник вправо |
17 | ? | Треугольник слева |
Как использовать альтернативные коды?
Что означает различие?
Какой код символа у Дельты?
Характер | Описание | Клавиатура Alt + # |
---|---|---|
Γ | Заглавная гамма (греческий) | * Альтернативный 226 |
δ | Малая дельта, (греческий) | * Альтернативный 235 |
Δ | Capital Delta, (греческий) | N / A |
è | Малая е, ударение могилы | Alt 138 или Alt 0232 |
Что означает символ треугольника?
треугольник будет представлять воду, потому что в этом положении она течет вниз. Он может символизировать небесную благодать и утробу. В треугольник что указывает вниз is один из старейших Символы божественной силы женщины. Это is древний символ который представляет гениталии богини.
Где в Word находится символ треугольника?
Как набрать треугольник?
Нажмите «30», чтобы вставить вертикаль треугольник лицом вверх. Нажмите «31», чтобы вставить вертикальную треугольник лицевой стороной вниз, ”16 ″ для вставки треугольник лицом влево или «17», чтобы вставитьтреугольник лицом вправо. Вы должны удерживать кнопку «Alt», пока нажимаете цифры.
Почему Delta используется для сдачи?
Как сделать этот символ?
Что означает этот символ в химии?
Как вы набираете Ø?
Введите Æ, Ø, Å и ß, используя клавиатуру 10 и клавишу Alt.
Что такое дельта продаж?
Объяснение клавиш компьютерной клавиатуры.
Уровень моря Нет. | Символ | Имя и фамилия |
---|---|---|
1 | & | амперсанд или и |
2 | « | апостроф или одинарная кавычка |
3 | * | звездочка |
4 | @ | at |
Что такое дельта продаж?
Нажмите и удерживайте клавишу ALT и введите 0 1 7 6 на цифровой клавиатуре вашей клавиатуры. Убедитесь, что NumLock включен, и введите 0176 с нулем в начале. Если нет цифровой клавиатуры, нажмите и удерживайте Fn, прежде чем вводить цифры 0176степень символ.
Что означает перемены?
Где находится Дельта в Word?
Существуют различные методы ввода дельта в Microsoft Word, например, вы можете использовать код alt + numpad, чтобы ввести его прямо с клавиатуры, или вы можете использовать Microsoftслово функции на вкладке вставки, где расположены символы.
Что такое символ Юникода?
Что такое символ Сигмы?
Альтернативный код. В качестве обходного пути вы можете добавить твердый треугольник имитировать дельту символ. Все, что вам нужно сделать, это зажать кнопку Alt, а затем ввести ее код. Удерживая нажатой клавишу Alt, нажмите 30, чтобы добавить треугольник.
Что такое дельта-анализ?
Дельта-анализ инструмент для определения дисперсии анализ по габаритным данным. Дельта-анализ доступен в Ad Hoc Анализ и приложения Template Studio.
Что означает стоимость Delta?
дельта. Отношение изменения цены опциона к изменению цены базового актива. Для опциона колл на акции дельта из 0.50 означает что на каждые 1.00 доллар, когда акции растут, цена опциона повышается на 0.50 доллара.
Что означает стоимость Delta?
Означает ли Дельта изменение?
Верхний регистр дельта (Δ) часто означает «изменение» или изменение в »по математике.
В чем разница между D и дельтой?
d используется для точного дифференцирования функции от функции. дельта используется для демонстрации большого и конечного изменения. символ частной производной используется, когда функция с несколькими переменными должна дифференцироваться только по определенной переменной, а другие переменные рассматриваются как константы.
Какой символ у Кельвина?
Что подразумевается под символами Юникода?
Unicode. Unicode универсальныйперсонаж стандарт кодирования. Он определяет способ индивидуальногосимволы представлены в текстовых файлах, веб-страницах и других типах документов. В то время как ASCII использует только один байт для представления каждого персонаж, Unicode поддерживает до 4 байтов для каждого персонаж.
Где в Excel находится символ треугольника?
d используется для точного дифференцирования функции от функции. дельта используется для демонстрации большого и конечного изменения. символ частной производной используется, когда функция с несколькими переменными должна дифференцироваться только по определенной переменной, а другие переменные рассматриваются как константы.
Как написать температуру?
Что это за символ ψ?
Альтернативный код. В качестве обходного пути вы можете добавить твердый треугольник имитировать дельту символ. Все, что вам нужно сделать, это зажать кнопку Alt, а затем ввести ее код. Удерживая нажатой клавишу Alt, нажмите 30, чтобы добавить треугольник.
Геометрия. Урок 3. Треугольники
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Определение треугольника
Треугольник – многоугольник с тремя сторонами и тремя углами.
Виды треугольников
Основные свойства треугольника:
Отрезки в треугольнике
Биссектриса угла – луч, выходящий из вершины угла и делящий его пополам.
Биссектриса треугольника – отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне.
Свойства биссектрис треугольника:
Замечание: биссектриса угла – это луч, а биссектриса треугольника – отрезок.
Медиана треугольника – отрезок, соединяющий вершину треугольника с серединой противолежащей стороны.
Свойства медиан треугольника:
Высота треугольника – это перпендикуляр, проведенный из вершины угла треугольника к прямой, содержащей противолежащую сторону этого треугольника.
Если треугольник остроугольный, то все три высоты будут лежать внутри треугольника. Если треугольник тупоугольный, то высоты, проведенные из вершин острых углов будут лежать вне треугольника, а высота, проведенная из вершины тупого угла будет лежать внутри треугольника.
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Свойство средней линии треугольника: средняя линия параллельна одной из его сторон и равна половине этой стороны.
Всего в треугольнике можно провести три средние линии. Три средние линии разбивают исходный треугольник на четыре равных треугольника. Площадь каждого маленького треугольника будет равна четверти площади большого треугольника.
Площадь треугольника
Площадь произвольного треугольника можно найти следующими способами:
Равнобедренный треугольник
Равнобедренным называется треугольник, у которого две стороны равны.
Равнобедренный треугольник может быть остроугольным, прямоугольным и тупоугольным.
Свойства равноберенного треугольника:
Равносторонний треугольник
Равносторонним называется треугольник, у которого все стороны и все углы равны.
Площадь равностороннего треугольника находится по формуле S = a 2 3 4
Высота равностороннего треугольника находится по формуле h = a 3 2
Прямоугольный треугольник
Свойства прямоугольного треугольника:
Теорема Пифагора
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.
У прямоугольного треугольника катеты перпендикулярны друг другу, следовательно, площадь можно найти по формуле:
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с треугольниками
Треугольник — определение и основные свойства и виды треугольника
Что такое треугольник знают дети уже в самом младшем возрасте, они умеют находить треугольник среди множества геометрических фигур. Но вот уже в школе по геометрии проходят треугольник и надо не просто узнавать треугольник, но и дать определение этому понятию.
Определение треугольника
Треугольник — это геометрическая фигура, окруженная тремя отрезками прямой (конечные точки каждых двух смежных отрезков соединены или перекрываются), называется треугольником. Точки пересечения отрезков называются вершинами треугольника, а сами отрезки между двумя соседними вершинами треугольника называются сторонами треугольника.
Посмотрите на треугольник на рисунке.
У него три вершины — , , и три стороны , и . У каждого треугольника есть имя — это имя образовано вершинами треугольника. Наш треугольник зовут ([а-бэ-цэ]). А треугольник на вот этом рисунке
будут звать ([эм-эн-ка]).
По правилам математической грамотности треугольник, как и любой другой многоугольник, следует называть, начиная с левого нижнего угла и называя все вершины по часовой стрелке.
В треугольнике можно провести особенные стороны — высоту, медиану и биссектрису. Начнем с высоты треугольника.
Высота треугольника
В каждом треугольнике можно провести три высоты. Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на противолежащую этой вершине сторону.
Например, в треугольнике , высотой будет отрезок .
А теперь проведем из каждой вершины по высоте — получим три высоты — больше провести высот нельзя.
В этом треугольнике три высоты , , .
Про биссектрисы и медианы поговорим в других статьях. Сейчас же давайте с вами рассмотрим каким бывает треугольник.
Виды треугольника
Виды треугольника могут быть по углам и по сторонам. То есть в первом случае вид треугольника зависит от того, какие в этом треугольнике углы, а во втором случае — какие в этом треугольнике стороны.
Виды треугольников по углам
В зависимости от того, все ли углы в треугольнике острые или есть тупой угол или угол, равный , треугольник бывает остроугольным, тупоугольным или прямоугольным.
Посмотрите на рисунки — перед вами три основных вида треугольника:
Виды треугольников по сторонам
Если у треугольника все стороны равны, то такой треугольник называют равносторонним или правильным. Если у треугольника равны только две стороны, то такой треугольник называют равнобедренным.
На рисунке показаны равносторонний и равнобедренный треугольники.
Свойства сторон треугольника
Треугольник имеет важные свойства и характеристики.
Устойчивость — это важное свойство треугольника, оно вам еще пригодится в курсе физики. Но вначале мы с ним знакомимся на уроках геометрии.
Треугольник устойчив на любой своей стороне — то есть чтобы вывести его из состояния равновесия надо приложить силу.
Свойства сторон: разница между любыми двумя сторонами треугольника меньше, чем третья сторона, а также любая сторона треугольника меньше, чем сумма двух других сторон. То есть:
Например, пусть наш треугольник имеет длины двух сторон , а см. В каком диапазоне будет размер третьей стороны треугольника?
Решение: согласно свойству сторон треугольника, получим:
Таким образом, третья сторона треугольника может быть в диапазоне от 4 до 10 см. Или в целых числах ее длина может быть 5, 6, 7, 8 или 9 см.
Правило существования треугольника
Используя свойство сторон треугольника мы можем определить существует ли треугольник с определенными сторонами.
Для проверки сложите длины самых коротких сторон и если сумма их больше длины самой большой стороны, тогда треугольник существует.
Например, существует ли треугольник с длинами сторон 3, 7 и 15 см?
Решение: проверим по свойству сторон треугольника: складываем две самые короткие стороны 3 и 7 см: 3+7=10, а 10 7 — треугольник с такими длинами сторон существует.
Свойство углов в треугольнике
Сумма всех углов в треугольнике равна .
Согласно этому свойству мы всегда можем, зная два угла в треугольнике, найти его третий угол. В прямоугольном треугольнике сумма двух острых углов всегда равна .
Например, пусть известно, что в треугольнике , , , нужно найти .
Так как сумма углов в треугольнике равна , то находим:
.
Ответ: .
Элементы композиции
Многие школьники спрашивают — а зачем нам знать про треугольник, как это может пригодиться в обычной жизни? Треугольник — простая фигура из которой можно составить более сложные. Это используется во многих сферах жизни, например, вы можете эргономично убирать в своей комнате, или красиво выкладывать бутерброды. Например, из двух равных треугольников можно составить параллелограмм.
А из двух равных прямоугольных треугольником — прямоугольник или квадрат. Два треугольника могут образовать трапецию, так как на рисунке. А вот какую фигурку можно смоделировать для программируемой игры — она вся сделана из треугольников:
Мы, рассмотрели самые важные свойства треугольника, и в дальнейшем изучим еще больше разных интересных свойств, закономерностей. Несмотря на свою простоту, треугольник таит в себе много загадок и открытий.