Как называется лопасти у вертолета

Устройство и работа несущего винта вертолета

Для того чтобы самолет или планер летал, нужна подъемная сила, а эта сила создается крылом. Поэтому главным в самолете является крыло, ибо в конечном счете Весь самолет может быть сведен в летающее крыло, без фюзеляжа, без оперения.

У вертолета роль крыла играет несущий винт. Даже если в летательном аппарате ничего больше нет, кроме несущего винта, мы можем принципиально назвать его «вертолетом».

Наверное, многие в детстве делали себе такой «вертолет», состоящий только ив одного винта, вырезанного из куска жести. Стартовым устройством для него служила обыкновенная катушка от ниток, вращающаяся на стержне.

Однако роль несущего винта вертолета гораздо более многогранна, чем роль крыла самолета.

Созданием подъемной силы еще не ограничивается назначение несущего винта.

Когда вы посмотрите на вертолет в горизонтальном полете, вы неизбежно обратите внимание на то, что фюзеляж носом наклонен к горизонту. При этом наклоненным вперед оказывается и несущий винт.

Полная аэродинамическая сила R, развиваемая несущим винтом и направленная перпендикулярно к плоскости вращения концов лопастей, в этом случае может быть разложена на две составляющие: направленную вертикально подъемную силу, которая поддерживает вертолет на заданной высоте, и силу, направленную по касательной к траектории полета, Р, которая на вертолете является силой тяги. За счет этой силы вертолет летит вперед. Таким образом, несущий винт в поступательном полете одновременно является и тянущим винтом.

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Однако и этим не ограничивается роль несущего винта. У вертолета в отличие от самолета нет рулевых поверхностей, таких, как элероны, триммеры, рули направления и высоты. Да они и не имели бы смысла, так как во время полета не обдувались бы потоком воздуха и в силу этого не могли бы служить целям управления.

Ведь мы знаем, что для изменения положения тела, к нему нужно приложить внешнюю силу. В полете вертолет окружен воздухом, поэтому внешняя сила может быть только результатом взаимодействия каких-либо частей вертолета с воздушной средой. Для того чтобы возникла сила сопротивления воздуха, тело должно перемещаться с большей скоростью. Когда вертолет висит в воздухе, то этому условию не отвечает ни одна его часть, кроме винта. Поэтому роль органа управления вертолетом также возложена на несущий винт. Действуя ручкой управления, летчик с помощью особых устройств, о которых будет рассказано в следующих главах, добивается такого положения, которое равносильно изменению плоскости вращения несущего винта. При этом изменяет свое направление и полная аэродинамическая сила воздушного винта и обе ее составляющие. И если подъемная сила всегда направлена вертикально вверх, то вторая составляющая — по касательной к траектории полета.

В зависимости от угла наклона полной аэродинамической силы меняется не только направление, но и величины ее составляющих. Следовательно, управляя несущим винтом, летчик может изменять не только направление полета, но и скорость полета.

Для подъема или спуска вертолета летчик также воздействует на лопасти несущего винта, уменьшая или увеличивая одновременно и на одинаковую величину угол установки всех лопастей.

Если на вертолете отказывает двигатель, то, уменьшая углы атаки лопастей, летчик ставит несущий винт в положение самовращения (авторотации). Поддерживаемый подъемной силой, создаваемой винтом на этом режиме работы, вертолет совершает безопасный планирующий спуск.

Из сказанного выше ясно, что для понимания устройства и полета вертолета надо разобраться прежде всего в работе несущего винта; для того чтобы вертолет успешно мог летать, конструктор должен обеспечить надежность прежде всего несущего винта.

Летчики, инженеры, техники и механики, летающие на вертолетах и обслуживающие их, прежде всего должны следить за безукоризненным состоянием несущего винта.

Итак, несущий винт — вот что главное в вертолете

Пропеллерный режим возникает при вертикальном подъеме или висении вертолета.

Режим косой обдувки возникает при поступательном полете вертолета.

Режим самовращения возникает при отключении двигателя вертолета от несущего винта в полете, при этом винт вращается под действием потока воздуха.

Режим вихревого кольца возникает при снижении вертолета. При таком режиме поток воздуха, проходя сквозь ометаемую винтом поверхность сверху вниз, вновь подходит к винту сверху.

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Однако в некоторых частных случаях, например, в пропеллерном режиме, его работа схожа с работой самолетного винта. Когда самолет находится на земле или летит горизонтально, его винт обдувается со стороны плоскости вращения (по оси). Когда вертолет находится на земле, висит в воздухе или поднимается вертикально вверх, его несущий винт также обдувается со стороны плоскости вращения (по оси). Различие при этом состоит только В ТОМ, что у самолета струи воздуха проходят через плоскость вращения винта в горизонтальном направлении, спереди назад, тогда как у вертолета — в вертикальном направлении, сверху вниз. При этом несущий винт захватывает воздух из зоны А сверху и отбрасывает его, закручивая, вниз, в зону. На место частиц воздуха, забранных из зоны А, поступают частицы воздуха из окружающей среды и частично из зоны Б, но уже вне плоскости вращения винта.

До того, как несущий винт был приведен во вращение, воздух над винтом н под ним находился в состоянии покоя С началом вращения винта приборы, внесенные с область действия винта, но находящуюся вдали от него, покажут наблюдателю, что в сечении 0—0 воздух по-прежнему находится в состоянии относительного покоя. Его давление равно атмосферному, а скорость. Расстояние от сечения 0—0, где еще не наблюдается влияния винта, до плоскости вращения винта есть величина переменная, которая зависит от вязкости среды и точности применяемых нами приборов. Чем точнее прибор, тем он дальше от винта зарегистрирует наличие скорости воздуха, частички которого будут устремлены к винту.

Если бы воздух был лишен сил вязкости, то действие винта сказалось бы бесконечно далеко.

Фактически ввиду того, что воздух представляет собой вязкую среду, влияние винта перестает ощущаться уже на расстоянии десятков метров.

Перенося наши приборы из сечения 0—0 все ближе к сечению, мы заметим постепенный прирост скорости воздуха, подсасываемого винтом. Та скорость, которую воздух имеет, подходя к сечению, называется индуктивной скоростью подсасывания. На основании закона сохранения энергии кинетическая энергия (энергия скорости движения) не может увеличиться без того, чтобы не уменьшался другой какой-либо вид энергии. И действительно, наряду с ростом скорости воздуха до ш, мы замечаем, что давление воздуха р0 при этом падает. Это значит, что увеличение скорости воздуха произошло за счет уменьшения давления. За винтом сечение потока сжимается и происходит еще большее увеличение скорости воздуха. Казалось бы, должно было последовать дальнейшее падение давления. Однако сразу за винтом давление растет до р-2. Не противоречит ли это закону сохранения энергии? Да, противоречит, если мы не примем во внимание того обстоятельства, что воздух извне (от винта) получил добавочную энергию (механическую). Механическая энергия винта, преобразуюсь в кинетическую и потенциальную энергию потока, увеличивает и скорость и давление воздуха одновременно.

В сечении сразу за винтом прибор нам показывает, что воздух по сравнению с сечением имеет скорость и», называемую скоростью отбрасывания. Причем скорость отбрасывания оказывается вдвое больше скорости подсасывания.

Далеко за винтом, в сечении (теоретически на бесконечном удалении), скорость и давление воздуха восстанавливаются до первоначальных значений. Энергия потока при этом из-за наличия сил вязкости рассеивается в пространстве.

Таково действие винта на воздух, которое является следствием приложения к винту энергии вращения. Этому действию соответствует ответное действие воздуха на винт, которое проявляется в виде силы тяги, являющейся проекцией полной аэродинамической силы R на ось, проходящую через втулку винта перпендикулярно плоскости его вращения. Если динамометр, соединенный с винтом, при остановленном винте показывал нулевое значение тяги, то по мере роста оборотов тяга будет все больше и больше возрастать. На режиме висения и вертикального подъема на всех других режимах полета

Величину тяги, создаваемой винтом, можно не только замерить, но и подсчитать.

Источник

Как устроен вертолет и почему он летает.

Доброго времени суток уважаемый гость. Сегодня, я расскажу Вам, как устроен вертолет, и почему он летает. Прежде всего, давайте определим, что это за зверь. Итак, вертолет или геликоптер – это летательный аппарат тяжелее воздуха.

Как устроен вертолет. Основные части.

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Схемы расположения роторов.

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Двигатели и органы управления.

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Двигатель может быть как поршневой, так и газотурбинный или турбовальный. В кабине пилота находятся органы управления и приборы контроля. К органам управления относятся:

Принцип полета и контроль.

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Подъемную силу, позволяющую вертолету летать, создает основной ротор. Лопасти ротора выполнены из легкого прочного материала, с профилем как у крыла самолета. Управление ими осуществляется при помощи автомата перекоса (АП). Который, в свою очередь, контролируется ручкой управления вертолетом и ручкой шаг-газ. У вертолетов (классической) схемы, хвостовой винт, располагается вертикально на конце хвостовой балки летательного аппарата. И, в свою очередь, служит для компенсации реактивного момента от ОР, и поворотов вокруг вертикальной оси.

Управление рулевым винтом, происходит посредством автомата перекоса, связанного с педалями маневрирования по курсу.

Как устроен вертолет. Автомат перекоса.

Теперь, давайте рассмотрим работу (АП) основного ротора. Этот замечательный механизм изобрел русским ученым Б. Н. Юрьевым в 1911 году. Открыв этим путь к вертолетостроению. Именно при помощи этого хитроумного изобретения, вертолеты могут летать передом, задом и даже боком. А самое главное, не переворачиваться при горизонтальном полете.

Маневрирование по тангажу и крену производится за счет изменения угла наклона конуса ОР. Сам же угол наклона конуса изменяется при увеличении угла атаки лопасти в определенном секторе ее вращения. Рассмотрим движение вертолета вперед. Каждая лопасть ОР, проходя в задней четверти, увеличивает угол атаки, а в передней – уменьшает. В результате, подъемная сила в задней четверти больше, а в передней – меньше.

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Таким образом, ось вращения несущего винта наклоняется вперед, а вместе с ней наклоняется и весь вертолет. За счет этого наклона и создается горизонтальная составляющая подъемной силы. И вертолет летит вперед. При полетах задом и боком, все происходит точно так же, только углы атаки увеличиваются, и уменьшаются в нужных секторах вращения.

Дальше, еще интересней. Вертолет летит вперед. Что же происходит с подъемной силой справа и слева. Представим, что несущий винт вращается по часовой стрелке. Значит, лопасти в секторе слева имеют условное направление движения вперед, а справа – назад. И вертолет летит вперед. Следовательно, за счет набегающего потока от движения вертолета, скорость левой лопасти больше чем правой. А значит, и подъемная сила, создаваемая левой больше чем – правой. Вот тут то и опять начинает работать автомат перекоса. Он корректирует углы атаки лопастей, движущихся по направлению движения вертолета, и — против. Тем самым уравнивая подъемную силу обеих. И не давая летательному вертолету опрокинуться. Здорово, не правда ли?

Источник

Из чего сделан несущий винт и лопасти у вертолета?

Главной составляющей вертолета является несущий винт, он состоит из втулки и лопастей. Чтобы понять, за счет чего вертолет летает, нужно узнать, из чего делают лопасти вертолета и втулку, как они устроены и как работают. Именно лопасти создают подъемную силу, за счет которой конструкция взлетает в воздух. Втулкой называют механизм, который запускает движение и делает возможным движения лопастей по угловой траектории. Лопасти подвергаются воздействию инерции и аэродинамических сил, перемещаясь горизонтально и вертикально. Также они могут поворачиваться, чтобы вертолет был управляем при подъеме. Рассмотрим это подробнее.

При проектировании несущего винта (НВ) конструкторы учитывают несколько основных параметров:

Из чего делают лопасти?

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Лопасти устроены и работают вовсе не так, как крылья у самолета, так как они предназначены для иных условий. Главное различие в том, на вертолетные лопасти воздействуют не постоянные, а переменные нагрузки. Именно поэтому к материалу выдвигают особые требования, он должен быть очень прочным.

Критерии оценки материала для изготовления:

Не нужно хорошо разбираться в физике, чтобы понять, что железо не подойдет. В свое время для изготовления лопастей использовали дерево, алюминиевый и титановые сплавы, нержавеющую и легированную сталь. Сейчас им на смену пришло более практичное решение — композиционные материалы.

Чтобы получить композиционный материал, сочетаются два вещества с разными характеристиками. Обычно это жесткий армирующий наполнитель и матрица. В роли первого могут использоваться стекловолокно или углеродное волокно, в роли второго часто идет смола синтетического происхождения. Смола термоактивная, поэтому при нагревании она становится не только жесткой, но стойкой к химическим воздействиям.

Технология используется везде, где нужно снизить вес без ущерба другим характеристикам, в первую очередь в авиации. Углепластик из которого делают лучшие гоночные машины — тоже композитный материал. Со временем такие материалы становятся все лучше, конструкторы экспериментируют с разными составляющими для совершенствования характеристик. В вертолетостроении, как и в авиастроении в целом идет упор на интеллектуальные материалы: высокомодульные, устойчивые к высоким температурам, адаптирующиеся к разным условиям. От разработок в данной сфере и внедрения их в массовое производство зависит общий успех вертолетостроения.

При создании лопастей помимо типа материала нужно определиться с формой лонжерона. Обязательно происходит подгонка показателей жесткости и веса, это необходимо для отстройки резонанса. Чтобы обеспечить нужную степень стойкости, всегда особенный акцент делается на земном резонансе.

Земной резонанс

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Так называют совпадение частоты колебаний вертолета и несущего винта. Оно должно достигаться в момент, когда конструкция находится на земле, отсюда и название — земной. В этот период амортизаторы не полностью зажаты, они не могут поглотить и компенсировать всех колебаний. Вибрации такого типа называют самовозбуждающимися, они наблюдаются только в поперечной плоскости.

Появилось это понятие не сразу, а после того, как в строение были добавлены вертикальные шарниры. Однако, при определенных условиях явление может коснуться и вертолетов с полозковыми шасси, когда они пребывают во взвешенном состоянии.

В воздухе лопастная часть НВ создает колебания вокруг расположенных вертикально шарниров, так работает сила Кориолиса. Под воздействием этой силы любой объект, который расположен в южном полушарии планеты при движении будет отклоняться влево, в северном — вправо. Она действует и на человека, которые прогуливается неспешным шагом, но влияние на объект, который движения в воздухе на высокой скорости, будет более ощутимым. Свою роль играет и переменное профильное сопротивление, которое меняется в зависимости от расположения в пространстве. Но такие колебания не будут иметь существенного значения, так как своими оборотами на полной скорости винт создает внушительные центробежные силы. И если центр вращения совпадает с центром тяжести секторов винта, то вибрации загасятся.

При пробеге и разбеге до или после взлета обороты будут ниже, соответственно центробежные силы тоже. Аппарат будет колебаться из-за неровной поверхности под ним, а также потому, что вышеперечисленные условия не будут соблюдены. За счет этого несущая система начнет раскачиваться, а с ней и весь корпус, дополнительную энергию колебания будет добавлять двигатель. Когда колебания несущей системы и всех конструкции не совпадают, появляется резонанс. И он может разорвать конструкцию, если пилот не примет верного решения. Рулевой винт начнет работать по принципу гироскопа, это приводит к повреждению хвостовой балки.

Когда возникает и как распознать?

Есть ряд условий, которые могут спровоцировать данное явление:

Пилоту несложно это распознать, при вертикальной посадке или пробежке по земле вертолет начинает раскачиваться, сначала на небольшую амплитуду, потом сильнее по нарастающей. Задачей пилота становится уменьшение энергии колебаний и при возможности избавление от их причин. Все это должно произойти очень быстро, так как разрушение корпуса может начаться уже через 6-7 секунд.

Режим вихревого кольца

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Не менее опасное явление, когда под винтом сталкиваются два потока: набегающий снизу и индуктивный сверху. Так происходит при посадке, когда двигатель работает на небольшой поступательной скорости и высокой вертикальной. Вертолет начинает беспорядочно колебаться, и это требует моментальной реакции от пилота.

Признаками становятся не только колебания, но и самопроизвольный рост вертикальной скорости на посадке, изменения в частоте вращения винта, снижение эффективности управления. Пилот плавно увеличивает общий шаг винта, чтобы скинуть вертикальную скорость. Если сделать так не получается, то он будет повышать горизонтальную скорость, чтобы она стала более 40 км в час, достигнет этой величины и перестанет снижать вертолет увеличением шага. Если при посадке произошел перелет, то оптимальным решением станет пойти на второй круг и начать снижаться вовремя.

Тестирования несущего винта

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Вторая важная деталь помимо лопастей — втулка. Она создается с учетом требований по использованию, например, чтобы она позволяла складывать лопасти во время простоя. В ней есть несколько типов шарниров: упругости, скольжения, качения, вертикальные, так обеспечивается нужный уровень мобильности. Обязательно применяется технология для упрочнения, так как от втулки зависит прочность и надежность всего механизма НВ. Готовые изделия проходят ряд испытаний, это необходимо для того, чтобы убедиться в соответствии всем стандартам, только потом начинается серийное производство.

Прочность подшипников втулки рассчитывается с запасом, чтобы она выдерживала нагрузки от всех маневров при полной загруженности, а также сопротивление воздуха с сильными непредсказуемыми потоками. Для проверки прочности составляется программа использования на износ. В таких проверках исследуют надежность как минимум трех образцов. Тестирования могут проводить не только в воздухе, но и на земле, но только при условии полного воссоздания всех условий и объема нагрузок. Необходимо проверить ресурс без вращающихся винтов, это делается при помощи специальных стендов, затем с ними, используя натурный вертолет или испытательные башни. Последняя стадия тестирования — в аэродинамической трубе.

Для лопастей предусмотрены усталостные тестирования, их цель — оценить долговечность в реальных условиях. То есть узнать, сколько деталь прослужит под влиянием меняющихся нагрузок. Для этого предусмотрены резонансные стенды, нагрузку на которые подает инерционное виброустройство, его устанавливают прямо на тестируемый экземпляр. Необходимо проверить устойчивость не только к поперечным нагрузкам, но при подгрузках в статическом режиме и от центробежной силы. Исследователи отмечают, под каким воздействием появляются усталостные трещины, как быстро они расходятся. Это позволяет определить оптимальный период проведения планового обслуживания, соответственно, продлить срок службы вертолета.

Таким образом добиваются безопасности, надежности и долговечности вертолетов, их совершенствования и более точного соответствия целям, для которых те предназначены. Совершенствуется все, и применяемые технологии, и материалы, из чего делают лопасти вертолета. Глобальные изменения переживают даже те части конструкции, которые десятилетиями считаются фундаментальными.

Источник

Несущий винт вертолёта

Полезное

Смотреть что такое «Несущий винт вертолёта» в других словарях:

Несущий винт — вертолета Ми 2 Несущий (основной) винт воздушный винт с вертикальной осью вращения, обеспечивающий подъёмную силу летательному аппар … Википедия

несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… … Энциклопедия «Авиация»

несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… … Энциклопедия «Авиация»

несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… … Энциклопедия «Авиация»

несущий винт — Рис. 1. Шарнирный несущий винт вертолёта. несущий винт вертолёта — воздушный винт, предназначенный для создания аэродинамических сил, необходимых для осуществления полёта, а также для управления вертолётом. По характеру обеспечения… … Энциклопедия «Авиация»

НЕСУЩИЙ ВИНТ — вертолета воздушный винт, к рый создаёт необходимые аэродинамич. силы для осуществления полёта, а также обеспечивает управление вертолётом. Н. в. устанавливаются в верх. части вертолёта и отличаются числом лопастей (2 8), их конструкцией… … Большой энциклопедический политехнический словарь

несущий винт — воздушный винт, служащий для создания аэродинамической подъёмной силы у вертолёта, винтокрыла, автожира и для управления этими летательными аппаратами. Состоит из лопастей и втулки, устанавливаемой на валу двигателя. Несущие винты имеют от 2 до 8 … Энциклопедия техники

Соосный несущий винт — Колонка несущих винтов на Ка 26 Соосная схема схема, при которой пара установленных параллельно … Википедия

Вертолёт — Bell 205 … Википедия

вертолёт — летательный аппарат тяжелее воздуха, у которого подъёмная сила и тяга для горизонтального полёта создаются одним или двумя т. н. несущими винтами. Вертолёт может взлетать вертикально с места без разбега и садиться без пробежки, он может… … Энциклопедия техники

Источник

Конструкция лопасти несущего винта вертолета

Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).

Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.

Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.

При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.

Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:

Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.

При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.

Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.

Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего — стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.

Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.

К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора — нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части — к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.

Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5—6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.

При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.

Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.

Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.

Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.

Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.

Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.

Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти — 2 мм.

Предотвратить обледенение возможно двумя путями.

Первый путь — это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.

Второй путь — это оборудование лопастей противо-обледенительными устройствами.

Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может

быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.

Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.

Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.

Будущее покажет, какой из этих способов найдет себе более широкое применение.

Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.

Как называется лопасти у вертолета. Смотреть фото Как называется лопасти у вертолета. Смотреть картинку Как называется лопасти у вертолета. Картинка про Как называется лопасти у вертолета. Фото Как называется лопасти у вертолета

Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.

Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.

Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади

Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05—0,08 (среднее значение 0,065).

Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9—12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.

Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.

Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *